Câu hỏi:
61 lượt xemTìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số:
a) y = 3sin x + 5;
b) ;
c) y = 4 – 2sin x cos x;
d) .
Lời giải
Hướng dẫn giải:
a) y = 3sin x + 5
Tập xác định của hàm số là ℝ.
Ta có: ∀x ∈ ℝ, thì – 1 ≤ sin x ≤ 1. Do đó, 2 ≤ 3sin x + 5 ≤ 8.
Vậy giá trị lớn nhất của hàm số bằng 8 khi sin x = 1 hay ; giá trị nhỏ nhất của hàm số bằng 2 khi sin x = − 1 hay .
b)
Ta có: ∀x ∈ ℝ, thì – 1 ≤ cos 2x ≤ 1 nên 0 ≤ 1 + cos 2x ≤ 2. (*)
Do đó, tập xác định của hàm số là ℝ.
Từ (*) suy ra ∀x ∈ ℝ. Do đó ∀x ∈ ℝ.
Vậy giá trị lớn nhất của hàm số đã cho bằng khi cos 2x = 1 hay x = kπ (k ∈ ℤ); giá trị nhỏ nhất của hàm số bằng 3 khi cos 2x = − 1 hay .
c) Ta có: y = 4 – 2sin x cos x = 4 – sin 2x.
Tập xác định của hàm số là ℝ.
Ta có: ∀x ∈ ℝ, thì – 1 ≤ sin 2x ≤ 1. Do đó, 3 ≤ 4 – sin 2x ≤ 5.
Vậy giá trị lớn nhất của hàm số bằng 5 khi sin 2x = − 1 hay ; giá trị nhỏ nhất của hàm số bằng 3 khi sin 2x = 1 hay .
d)
Tập xác định của hàm số là ℝ.
Ta có: ∀x ∈ ℝ, thì – 1 ≤ sin x ≤ 1. Do đó, 3 ≤ 4 – sin x ≤ 5. Suy ra .
Khi đó ∀x ∈ ℝ.
Vậy giá trị lớn nhất của hàm số bằng khi sin x = 1 hay ; giá trị nhỏ nhất của hàm số bằng khi sin x = − 1 hay .
Hàm số y = cos x nghịch biến trên khoảng:
A. (0; π).
B. (π; 2π).
C. .
D. (– π; 0).
Hàm số y = sin x đồng biến trên khoảng:
A. .
B. .
C. (10π; 11π).
D. (9π; 10π).