Câu hỏi:

136 lượt xem
Tự luận

Bài 9.5 trang 82 Toán 10 Tập 2Hai bạn An và Bình mỗi người gieo một con xúc xắc cân đối. Tính xác suất để:

a) Số chấm xuất hiện trên hai con xúc xắc bé hơn 3 ;

b) Số chấm xuất hiện trên con xúc xắc mà An gieo lớn hơn hoặc bằng 5 ;

c) Tích hai số chấm xuất hiện trên hai con xúc xắc bé hơn 6;

d) Tổng hai số chấm xuất hiện trên hai con xúc xắc là một số nguyên tố. 

Xem đáp án

Lời giải

Hướng dẫn giải:

Lời giải

Do gieo một con xúc xắc thì số chấm xuất hiện có thể là 1, 2, 3, 4, 5, 6 nên khi gieo 2 con xúc xắc thì các kết quả của không gian mẫu được cho trong bảng:

 Xúc xắc của Bình

Xúc xắc của An

1

2

3

4

5

6

1

(1;1)

(1;2)

(1;3)

(1;4)

(1;5)

(1;6)

2

(2;1)

(2;2)

(2;3)

(2;4)

(2;5)

(2;6)

3

(3;1)

(3;2)

(3;3)

(3;4)

(3;5)

(3;6)

4

(4;1)

(4;2)

(4;3)

(4;4)

(4;5)

(4;6)

5

(5;1)

(5;2)

(5;3)

(5;4)

(5;5)

(5;6

6

(6;1)

(6;2)

(6;3)

(6;4)

(6;5)

(6;6)

Từ bảng trên, mỗi ô tương ứng với một kết quả có thể. Có 36 ô, vậy n(Ω) = 36.

a) Gọi biến cố A: “Số chấm xuất hiện trên hai con xúc xắc bé hơn 3”.

Các kết quả thuận lợi của A là: (1;1), (1;2), (2;1), (2;2).

 A = {(1;1), (1;2), (2;1), (2;2)}.

 n(A) = 4. Khi đó P(A)=nAnΩ=436=19.

Vậy xác suất để “số chấm xuất hiện trên hai con xúc xắc bé hơn 3” là 19.

b) Gọi biến cố B: “Số chấm xuất hiện trên con xúc xắc mà An gieo lớn hơn hoặc bằng 5”.

Các kết quả thuận lợi của B là:

(5;1), (5;2), (5;3), (5;4), (5;5), (5;6), (6;1), (6;2), (6;3), (6;4), (6;5), (6;6).

 B = {(5;1), (5;2), (5;3), (5;4), (5;5), (5;6), (6;1), (6;2), (6;3), (6;4), (6;5), (6;6)}.

 n(B) = 12. Khi đó P(B)=nBnΩ=1236=13

Vậy xác suất để “Số chấm xuất hiện trên con xúc xắc mà An gieo lớn hơn hoặc bằng 5” là 13.

c) Gọi biến cố C: “Tích hai số chấm xuất hiện trên hai con xúc xắc bé hơn 6”.

Các kết quả thuận lợi của C là: (1; 1), (1; 2), (1; 3), (1; 4), (1; 5), (2; 1), (2; 2), (3; 1), (4; 1), (5; 1).

 C = {(1; 1), (1; 2), (1; 3), (1; 4), (1; 5), (2; 1), (2; 2), (3; 1), (4; 1), (5; 1)}.

 n(C) = 10. Khi đó P(C)=nCnΩ=1036=518.

Vậy xác suất để “Tích hai số chấm xuất hiện trên hai con xúc xắc bé hơn 6” là 518.

d) Gọi biến cố D: “Tổng hai số chấm xuất hiện trên hai con xúc xắc là một số nguyên tố”.

Các kết quả thuận lợi của D là: (1; 1), (1; 2), (2; 1), (1; 4), (4; 1), (1; 6), (6; 1), (2; 3); (3; 2), (2; 5), (5; 2), (3; 4), (4; 3), (5; 6), (6; 5).

 D = {(1; 1), (1; 2), (2; 1), (1; 4), (4; 1), (1; 6), (6; 1), (2; 3); (3; 2), (2; 5), (5; 2), (3; 4), (4; 3), (5; 6), (6; 5)}.

 n(D) = 15. Khi đó P(D)=nDnΩ=1536=512.

Vậy xác suất để “Tổng hai số chấm xuất hiện trên hai con xúc xắc là một số nguyên tố” là 512.

CÂU HỎI HOT CÙNG CHỦ ĐỀ