Câu hỏi:
58 lượt xemCho đoạn thẳng AB và gọi A1B1 là hình chiếu đứng của AB. Biết đường thẳng AB song song với mặt phẳng hình chiếu đứng, chứng minh rằng AB = A1B1.
Lời giải
Hướng dẫn giải:
Từ A, B kẻ các đường thẳng vuông góc với mặt phẳng hình chiếu đứng (P). Đường thẳng qua A và B lần lượt giao với mặt phẳng (P) tại các điểm A1, B1.
Ta có: AA1 // BB1 (vì AA1, BB1 cùng vuông góc với (P))
Vì AB // (P) nên khoảng cách từ A đến (P) bằng khoảng cách từ B đến (P).
Hay AA1 = BB1.
Do đó, tứ giác AA1B1B là hình bình hành.
Suy ra: AB = A1B1.
Quan sát Hình 3.4 và cho biết hình nào thể hiện hình chiếu trục đo của tứ giác ABCD.
Xác định hình chiếu vuông góc của hình ℋ (H.3.8a) trong các hình dưới đây.
Cho ví dụ về một vật thể có cả ba hình chiếu vuông góc là:
a) hình chữ nhật;
b) hình tròn.
Trên hình chiếu của mỗi vật thể (H.3.27) còn thiếu một số nét. Bổ sung các nét còn thiếu đó.
Trong các hình của Hình 3.28, hình nào là hình chiếu trục đo của hình lăng trụ tam giác?