Câu hỏi:

37 lượt xem
Tự luận

Cho Hình 4.20, biết AB = CB, AD = CD, DAB^=90°,

BDC^=30°.

a) Chứng minh rằng ΔABD=ΔCBD.

b) Tính ABC^.

Xem đáp án

Lời giải

Hướng dẫn giải:

T

ΔABD,ΔCBD; 

AB = CB, AD = CD, DAB^=90°,BDC^=30°. 

KL

a) ΔABD=ΔCBD.

b) Tính ABC^. 

 Tài liệu VietJack

a) Chứng minh (hình vẽ trên):

Hai tam giác ABD và CBD có:

AB = CB (theo giả thiết);

AD = CD (theo giả thiết);

BD là cạnh chung.

Vậy ΔABD=ΔCBD(c.c.c).

b) Vì ΔABD=ΔCBD (chứng minh câu a)

Nên BDA^=BDC^ (hai góc tương ứng) và ABD^=CBD^ (hai góc tương ứng).

Mà BDC^=30° (theo giả thiết), do đó BDA^=30°.

Trong tam giác ABD có DAB^=90° nên là tam giác vuông tại A, khi đó hai góc nhọn của tam giác ABD phụ nhau.

Do đó ABD^+BDA^=90°.

Suy ra ABD^=90°BDA^  

ABD^=90°30°

ABD^=60°

Tia BD nằm giữa hai tia BA và BC nên ABC^=ABD^+CBD^.

Mà ABD^=CBD^ (chứng minh trên), do đó ABC^=ABD^+ABD^.

Hay ABC^=2ABD^=2.60°=120°.

Vậy ABC^=120°.

CÂU HỎI HOT CÙNG CHỦ ĐỀ