Câu hỏi:

21 lượt xem
Tự luận

Cho hình thang ABCD có cạnh AD vuông góc với hai đáy AB và CD. Số đo góc ở đỉnh B gấp đôi số đo góc ở đỉnh C. Tính số đo các góc của hình thang đó

Xem đáp án

Lời giải

Hướng dẫn giải:

GT

ABCD là hình thang có hai đáy AB và CD;

ADAB,ADCD;

ABC^=2BCD^. 

KL

Tính số đo của các góc ABC^,BCD^,CDA^,DAB^. 

Tài liệu VietJack

Chứng minh (Hình vẽ trên):

ABCD là hình thang có hai đáy là AB và CD nên AB // CD.

Vì ADAB tại A nên ta có DAB^=90°. 

Vì ADCD tại D nên ta có  CDA^=90°.

Vẽ tia Cx là tia đối của tia CD.

Mà AB // CD nên AB // Cx.

Từ đó suy ra ABC^=BCx^ (hai góc so le trong).

Do CD và Cx là hai tia đối nhau nên BCD^ và BCx^ là hai góc kề bù hay BCD^+BCx^=180° (tính chất hai góc kề bù).

Suy ra BCD^+ABC^=180°.

Mà ABC^=2BCD^ 

Nên BCD^+2BCD^=180° 

3BCD^=180° 

BCD^=60° .

Suy ra ABC^=2BCD^=2.60°=120°. 

Vậy ABC^=120°;BCD^=60°;CDA^=90°;DAB^=90°. 

CÂU HỎI HOT CÙNG CHỦ ĐỀ