Câu hỏi:

20 lượt xem
Tự luận

Kẻ các tia phân giác Ax, By của một cặp góc so le trong tạo bởi đường thẳng b vuông góc với hai đường thẳng song song c, d (H.3.48). Chứng minh rằng hai tia phân giác đó nằm trên hai đường thẳng song song

Xem đáp án

Lời giải

Hướng dẫn giải:

GT

c // d, bc,bd; 

b cắt c tại A, b cắt d tại B;

Tia Ax là tia phân giác của góc zAB, tia By là tia phân giác của góc ABd.

KL

Đường thẳng chứa Ax song song với đường thẳng chứa By.

Tài liệu VietJack

Chứng minh (Hình vẽ trên):

Theo giả thiết bc tại A nên zAB^=90°.

Do tia Ax là tia phân giác của góc zAB nên Ax nằm giữa hai tia Az và AB; zAx^=xAB^=12zAB^ (tính chất tia phân giác của một góc).

Mà zAB^=90° nên zAx^=xAB^=12zAB^=12.90°=45°.1

Theo giả thiết bd tại B nên ABd^=90°.

Do tia By là tia phân giác của góc ABd nên tia By nằm giữa hai tia BA và Bd; ABy^=yBd^=12ABd^ (tính chất tia phân giác của một góc).

Mà ABd^=90° nên ABy^=yBd^=12ABd^=12.90°=45°.2

Từ (1) và (2) ta có xAB^=ABy^=45°. 

Mà hai góc này ở vị trí so le trong nên Ax // By (dấu hiệu nhận biết hai đường thẳng song song).

Suy ra đường thẳng chứa tia Ax song song với đường thẳng chứa tia By.

Vậy đường thẳng chứa tia Ax song song với đường thẳng chứa tia By. 

CÂU HỎI HOT CÙNG CHỦ ĐỀ