Câu hỏi:

41 lượt xem
Tự luận

Cho tam giác ABC có BAC^ là một góc tù. Lấy điểm D nằm giữa A và B; lấy điểm E nằm giữa A và C (H.9.51). Chứng minh DE < BC

Xem đáp án

Lời giải

Hướng dẫn giải:

Giải Toán 7  (Kết nối tri thức): Bài tập cuối chương 9 (ảnh 1) 

Xét ADE có BDE^ là góc ngoài của đỉnh D nên BDE^=DAE^+DEA^>DAE^

Mà DAE^ là góc tù nên BDE^ là góc tù.

Xét BDE có BDE^ là góc tù nên BDE^ là góc lớn nhất trong tam giác.

Do đó, BE > DE (1)

Xét ABE có BEC^ là góc ngoài của đỉnh E nên BEC^=EAB^+EBA^>EAB^

Mà DAE^ là góc tù nên BEC^ là góc tù.

Xét BEC có BEC^ là góc tù nên BEC^ là góc lớn nhất trong tam giác.

Do đó, BC > BE (2)

Từ (1) và (2) suy ra, BC > DE.

Vậy DE < BC.

CÂU HỎI HOT CÙNG CHỦ ĐỀ