Câu hỏi:

43 lượt xem
Tự luận

Cho tam giác MNP có M^=N^. Vẽ tia phân giác PK của góc MPN (KMN).

Chứng minh rằng:

a) MKP^=NKP^;                                

b) ΔMPK=ΔNPK;

c) Tam giác MNP có cân tại P không

Xem đáp án

Lời giải

Hướng dẫn giải:

GT

ΔMNPM^=N^;

PK là tia phân giác của góc MPN.

KL

a) MKP^=NKP^; 

b) ΔMPK=ΔNPK;

c) Tam giác MNP có cân tại P không?

Tài liệu VietJack

Chứng minh (hình vẽ trên):

a) PK là tia phân giác của góc MPN (theo giả thiết) nên MPK^=NPK^ (tính chất tia phân giác của một góc).

Tam giác MPK có NKP^ là góc ngoài của tam giác tại đỉnh K nên ta có NKP^=MPK^+M^.

Tam giác NPK có MKP^ là góc ngoài của tam giác tại đỉnh K nên ta có MKP^=NPK^+N^.

Mà MPK^=NPK^ (chứng minh trên) và M^=N^ (theo giả thiết).

Do đó MKP^=NKP^.

b) Xét tam giác MPK và tam giác NPK có:

MPK^=NPK^ (chứng minh ở câu a);

PK là cạnh chung;

MKP^=NKP^ (chứng minh ở câu a).

Vậy ΔMPK=ΔNPK (g.c.g).

c) Từ ΔMPK=ΔNPK (chứng minh ở câu b) suy ra MP = NP (hai cạnh tương ứng).

Do đó tam giác MNP cân tại P (định nghĩa tam giác cân).

Vậy tam giác MNP cân tại P.

CÂU HỎI HOT CÙNG CHỦ ĐỀ