Câu hỏi:

21 lượt xem
Tự luận

Tam giác vuông có hai cạnh bằng nhau được gọi là tam giác vuông cân.

Hãy giải thích các khẳng định sau:

a) Tam giác vuông cân thì cân tại đỉnh góc vuông;

b) Tam giác vuông cân có hai góc nhọn bằng 45o;

c) Tam giác vuông có một góc nhọn bằng 45o là tam giác vuông cân

 

Xem đáp án

Lời giải

Hướng dẫn giải:

a)

GT

ΔABC là tam giác vuông cân;

A^=90°. 

KL

ΔABC cân tại A.

Tài liệu VietJack

Tam giác ABC vuông tại A nên hai góc nhọn của tam giác phụ nhau suy ra B^+C^=90°. 

Khi đó số đo của góc B và góc C sẽ nhỏ hơn 90°.

+) Nếu tam giác ABC cân tại B nên A^=C^ (tính chất tam giác cân).

Mà A^=90° nên C^=90° (vô lí vì C^<90°)

Suy ra tam giác ABC vuông tại A thì không thể cân tại B.

+) Nếu tam giác ABC cân tại C nên A^=B^ (tính chất tam giác cân).

Mà A^=90° nên B^=90° (vô lí vì B^<90°)

Suy ra tam giác ABC vuông tại A thì không thể cân tại C.

Do vậy tam giác ABC vuông tại A và cân tại A.

b)

GT

ΔABC là tam giác vuông cân.

KL

Hai góc nhọn bằng 45°.

Tài liệu VietJack

Tam giác ABC vuông cân nên tam giác ABC cân tại đỉnh A (theo câu a).

Suy ra B^=C^ (tính chất tam giác cân).

Mà trong một tam giác vuông, hai góc nhọn phụ nhau nên ta có: B^+C^=90°.

Do đó B^+B^=90° 

2B^=90°

B^=45°. 

Khi đó B^=C^=45°.

c)

GT

ΔABC vuông tại A, B^=45°. 

KL

 ΔABC là tam giác vuông cân.

Tài liệu VietJack

Tam giác ABC vuông tại A (theo giả thiết) nên hai góc nhọn phụ nhau.

Do đó B^+C^=90°

Suy ra C^=90°B^ 

C^=90°45° 

C^=45°

Khi đó B^=C^=45°, suy ra tam giác ABC cân tại A.

Mà tam giác ABC vuông tại A nên tam giác ABC vuông cân tại A.

Vậy tam giác ABC vuông cân tại A.  

CÂU HỎI HOT CÙNG CHỦ ĐỀ