Câu hỏi:

37 lượt xem
Tự luận

Cho tứ diện ABCD. Gọi G và H lần lượt là trọng tâm của hai tam giác ABC và ACD. Chứng minh rằng GH//(BCD)

Xem đáp án

Lời giải

Hướng dẫn giải:

Sách bài tập Toán 11 Bài 12 (Kết nối tri thức): Đường thẳng và mặt phẳng song song (ảnh 2)

Gọi E, F lần lượt là trung điểm của các cạnh BC, CD. Vì G là trọng tâm của tam giác ABC nên A, G, E thẳng hàng và AGAE=23

Tương tự ta có A, H, F thẳng hàng và AHAF=23.

Do đó, AGAE=AHAF

Trong tam giác AEF có: AGAE=AHAF, theo định lí Thalès đảo ta có GH//EF, mà EF(BCD) nên GH//(BCD) 

CÂU HỎI HOT CÙNG CHỦ ĐỀ