Câu hỏi:

25 lượt xem
Tự luận

Cho tam giác nhọn ABC. Đường tròn tâm O đường kính BC cắt các cạnh AB và AC lần lượt tại M và N. Chứng minh MN < BC.

Xem đáp án

Lời giải

Hướng dẫn giải:

Luyện tập 2 trang 95 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Nối OM, ON.

Xét ∆OMN, ta có: MN < OM + ON (Bất đẳng thức tam giác). (1)

Vì B, M, N, C cùng thuộc đường tròn (O) nên OA = OM = ON = OB.

Ta có: OM + ON = OB + OC.

Lại có BC là đường kính của đường tròn (O) nên BC = OB + OC.

Do đó OM + ON < BC. (2)

Từ (1) và (2) suy ra MN < AB.

CÂU HỎI HOT CÙNG CHỦ ĐỀ