Câu hỏi:
21 lượt xemCho M, N là hai điểm phân biệt nằm trên đường trung trực của đoạn thẳng AB sao cho AM = AN. Chứng minh rằng MB = NB và góc AMB bằng góc ANB
Lời giải
Hướng dẫn giải:
GT |
M, N thuộc đường trung trực của AB AM = AN |
KL |
MB = NB
|
M và N là hai điểm phân biệt nằm trên đường trung trực của AB với AM = AN nên M và N có vị trí như hình vẽ trên.
Gọi O là giao điểm của AB và MN, d là đường trung trực của AB nên tại trung điểm O của AB.
Xét tam giác OAM (vuông tại O) và tam giác OAN (vuông tại O) có:
OA là cạnh chung;
AM = AN (theo giả thiết).
Vậy (cạnh huyền – cạnh góc vuông).
Suy ra OM = ON (hai cạnh tương ứng) và (hai góc tương ứng).
Xét tam giác OBM (vuông tại O) và tam giác OBN (vuông tại O) có:
OB là cạnh chung;
OM = ON (chứng minh trên).
Vậy (hai cạnh góc vuông).
Suy ra MB = NB (hai cạnh tương ứng) và (hai góc tương ứng).
Ta có (chứng minh trên) và (chứng minh trên) nên
Mà và
Suy ra
Cho tam giác ABC vuông tại A có = 60°. Trên cạnh BC lấy điểm M sao cho = 30°