Câu hỏi:
401 lượt xemCho tam giác ABC cân tại A có
. Hai đường cao BD và CE cắt nhau tại H.
a) Tính số đo các góc còn lại của tam giác ABC.
b) Chứng minh BD = CE.
c) Chứng minh tia AH là tia phân giác của góc BAC
Lời giải
Hướng dẫn giải:
GT |
ABC cân tại A, BD AC, CE AB, BD cắt CE tại H. |
KL |
a) Tính số đo các góc còn lại của tam giác ABC; b) BD = CE; c) AH là tia phân giác của góc BAC. |
Chứng minh (Hình vẽ dưới đây):
a) Do tam giác ABC cân tại A (giả thiết)
Nên AB = AC và (tính chất tam giác cân)
Xét tam giác ABC có (tổng ba góc trong tam giác)
Suy ra .
Vậy và
b) Xét ADB (vuông tại D) và ACE (vuông tại E) có:
AB = AC (chứng minh trên),
là góc chung,
Do đó ABD = ACE (cạnh huyền - góc nhọn).
Suy ra BD = CE (hai cạnh tương ứng).
Vậy BD = CE.
c) Vì ABD = ACE (chứng minh câu a) nên AD = AE (hai cạnh tương ứng).
Xét AHE (vuông tại E) và AHD (vuông tại D) có:
AE = AD (chứng minh trên),
AH là cạnh chung.
Do đó AHE = AHD (cạnh huyền - cạnh góc vuông).
Suy ra (hai góc tương ứng).
Do đó AH là tia phân giác của .
Vậy AH là tia phân giác của .
Cho tam giác ABC có:
a) Tính .
b) So sánh độ dài các cạnh AB, BC, CA
Cho tam giác nhọn MNP có trực tâm H. Khi đó, góc HMN bằng góc nào sau đây