Câu hỏi:
30 lượt xemHãy vẽ một đồ thị có 4 đỉnh và:
a) có đúng hai đỉnh cùng bậc và bậc là 1;
b) có đúng hai đỉnh cùng bậc và bậc là 2.
Lời giải
Hướng dẫn giải:
a) Đồ thị có 4 đỉnh và có đúng hai đỉnh cùng bậc và bậc là 1.
Ở đây, đỉnh A và C đều có bậc 1, trong khi đỉnh D có bậc 2, còn đỉnh B có bậc 0.
b) Đồ thị có 4 đỉnh và có đúng hai đỉnh cùng bậc và bậc là 2.
Ở đây, đỉnh B và C đều có bậc 2, trong khi đỉnh D có bậc 3, còn đỉnh A có bậc 1.
Cho đồ thị như Hình 2.5. Tìm các đỉnh là đầu mút của: 0 cạnh; 1 cạnh; 2 cạnh; 3 cạnh.
Chứng minh rằng một đồ thị đầy đủ có n đỉnh thì có n(n−1)2𝑛𝑛−12 cạnh.
Chứng minh rằng không tồn tại đồ thị với các đỉnh có bậc là 2, 3, 3, 4, 4 và 5.