Câu hỏi:

70 lượt xem
Tự luận

HĐ2 trang 7 Toán 11 Tập 1Nhận biết hệ thức Chasles

Cho ba tia Ou, Ov, Ow với số đo của các góc hình học uOv và vOw lần lượt là 30° và 45°.

HĐ2 trang 7 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

a) Xác định số đo của ba góc lượng giác (Ou, Ov), (Ov, Ow) và (Ou, Ow) được chỉ ra ở Hình 1.5.

b) Với các góc lượng giác ở câu a, chứng tỏ rằng có một số nguyên k để

sđ(Ou, Ov) + sđ(Ov, Ow) = sđ(Ou, Ow) + k360°.

Xem đáp án

Lời giải

Hướng dẫn giải:

Lời giải:

a) Quan sát Hình 1.5 ta có:

sđ(Ou, Ov) = 30°;

sđ(Ov, Ow) = 45°;

sđ(Ou, Ow) = – (360° – 30° – 45°) = – 285°.

b) Ta có: sđ(Ou, Ov) + sđ(Ov, Ow) = 30° + 45° = 75°.

Lại có: – 285° + 1 . 360° = 75°.

Vậy tồn tại một số nguyên k = 1 để sđ(Ou, Ov) + sđ(Ov, Ow) = sđ(Ou, Ow) + k360°.

CÂU HỎI HOT CÙNG CHỦ ĐỀ