Câu hỏi:

72 lượt xem
Tự luận

3. Tổng n số hạng đầu của một cấp số cộng

Giải Toán 11 trang 50

HĐ3 trang 50 Toán 11 Tập 1Cho cấp số cộng (un) với số hạng đầu u1 và công sai d.

Để tính tổng của n số hạng đầu

Sn = u1 + u2 + ... + un – 1 + un,

hãy lần lượt thực hiện các yêu cầu sau:

a) Biểu diễn mỗi số hạng trong tổng Sn theo số hạng đầu u1 và công sai d.

b) Viết Sn theo thứ tự ngược lại: Sn = un + un – 1 + ... + u2 + u1 và sử dụng kết quả ở phần a) để biểu diễn mỗi số hạng trong tổng này theo u1 và d.

c) Cộng từng vế hai đẳng thức nhận được ở a), b), để tính Sn theo u1 và d.

Xem đáp án

Lời giải

Hướng dẫn giải:

a) Ta có: u2 = u1 + d; ...; un – 1 = u1 + (n – 1 – 1)d = u1 + (n – 2)d; un = u1 + (n – 1)d.

Sn = u1 + u2 + ... + un – 1 + un

= u1 + (u1 + d) + ... + [u1 + (n – 2)d] + [u1 + (n – 1)d]

b) Sn = un + un – 1 + ... + u2 + u1

= [u1 + (n – 1)d] + [u1 + (n – 2)d] + ... + (u1 + d) + u1

c) Ta có:

Sn + Sn = {u1 + (u1 + d) + ... + [u1 + (n – 2)d] + [u1 + (n – 1)d]} + {[u1 + (n – 1)d] + [u1 + (n – 2)d] + ... + (u1 + d) + u1}

⇔ 2Sn = {u+ [u1 + (n – 1)d]} + {(u1 + d) + [u1 + (n – 2)d]} + ... + {[u1 + (n – 2)d] + (u1 + d)} + {[u1 + (n – 1)d] + u1}

⇔ 2Sn = [2u1 + (n – 1)d] + [2u1 + (n – 1)d] + ... + [2u1 + (n – 1)d] + [2u1 + (n – 1)d]

⇔ 2S­n = n . [2u1 + (n – 1)d]

⇔ Sn = [2u1 + (n – 1)d] .

CÂU HỎI HOT CÙNG CHỦ ĐỀ