Câu hỏi:
70 lượt xem Tự luận
Luyện tập 2 trang 49 Toán 11 Tập 1: Cho dãy số (un) với un = 4n – 3. Chứng minh rằng (un) là một cấp số cộng. Xác định số hạng đầu u1 và công sai d của của cấp số cộng này. Từ đó viết số hạng tổng quát un dưới dạng un = u1 + (n – 1)d.
Lời giải
Hướng dẫn giải:
Ta có: un – un – 1 = (4n – 3) – [4(n – 1) – 3] = 4n – 3 – (4n – 4 – 3) = 4, với mọi n ≥ 2.
Do đó, dãy số (un) là một cấp số cộng với số hạng đầu u1 = 4 . 1 – 3 = 1 và công sai d = 4.
Số hạng tổng quát là: un = 1 + (n – 1) . 4
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 8:
Câu 9:
Câu 11:
Câu 12:
Câu 13: