Câu hỏi:

70 lượt xem
Tự luận

Tam giác ABC có ba đường phân giác cắt nhau tại I. Chứng minh:

a) IAB^+IBC^+ICA^=90°;

b) BIC^=90°+12BAC^

Xem đáp án

Lời giải

Hướng dẫn giải:

GT

ABC, I là giao điểm của ba đường phân giác

KL

a) IAB^+IBC^+ICA^=90°;

b) BIC^=90°+12BAC^.

Chứng minh (Hình vẽ dưới đây):

Giải Toán 7 Bài 11 (Cánh diều): Tính chất ba đường phân giác của tam giác (ảnh 1) 

a) Vì AI là đường phân giác của BAC^ nên IAB^=12BAC^ (tính chất tia phân giác của một góc)

Vì BI là đường phân giác của ABC^ nên IBC^=12ABC^ (tính chất tia phân giác của một góc)

Vì CI là đường phân giác của ACB^ nên ICA^=12ACB^ (tính chất tia phân giác của một góc)

Suy ra IAB^+IBC^+ICA^=12BAC^+12ABC^+12ACB^=12BAC^+ABC^+ACB^

Xét tam giác ABC ta có BAC^+ABC^+ACB^=180° (tổng ba góc của một tam giác)

Do đó IAB^+IBC^+ICA^=12.180°=90°.

Vậy IAB^+IBC^+ICA^=90°.

b) Vì CI là đường phân giác của ACB^ nên ICA^=ICB^=12ACB^.

Suy ra IAB^+IBC^+ICB^=90°.

Do đó IBC^+ICB^=90°IAB^=90°12BAC^.

Xét tam giác BIC có: BIC^+IBC^+ICB^=180° (tổng ba góc của một tam giác)

Do đó BIC^=180°IBC^+ICB^=180°90°12BAC^=90°+12BAC^.

Vậy BIC^=90°+12BAC^.

CÂU HỎI HOT CÙNG CHỦ ĐỀ