Câu hỏi:
95 lượt xemLời giải
Hướng dẫn giải:
Với \(x \in \mathbb{Z}\), xét \(A = \frac{{2x - 3}}{{2 - 3x}}\)
Ta có: \(3A = 3.\frac{{2x - 3}}{{2 - 3x}} = \frac{{6x - 9}}{{2 - 3x}} = \frac{{ - 2\left( {2 - 3x} \right) - 5}}{{2 - 3x}} = - 2 - \frac{5}{{2 - 3x}}\)
Với \(x \in \mathbb{Z}\), để \(3A\) nhận giá trị nguyên thì \(\frac{5}{{2 - 3x}}\) có giá trị nguyên
Điều này có nghĩa là \(2 - 3x \in U\left( 5 \right) = \left\{ {1; - 1;5; - 5} \right\}\)
Ta có bảng sau:
Do \(x \in \mathbb{Z}\) nên ta có \(x \in \left\{ {1; - 1} \right\}\).
Thử lại:
Với \(x = 1\) ta có \(A = \frac{{2.1 - 3}}{{2 - 3.1}} = \frac{{ - 1}}{{ - 1}} = 1\) có giá trị nguyên nên \(x = 1\) thỏa mãn.
Với \(x = - 1\) ta có \(A = \frac{{2.\left( { - 1} \right) - 3}}{{2 - 3.\left( { - 1} \right)}} = \frac{{ - 5}}{5} = - 1\) có giá trị nguyên nên \(x = - 1\) thỏa mãn.
Vậy giá trị nguyên của \(x\) cần tìm là \(x \in \left\{ {1; - 1} \right\}\).
Liệt kê các số nguyên tố nhỏ hơn 10. Dãy dữ liệu mà các dữ liệu đều hợp lí là
Trong các số thập phân , số bé nhất và lớn nhất lần lượt là
Thực hiện phép tính (tính hợp lí nếu có thể):
a) ; b) ;
c) ; d) .