Giải Toán 8 Trang 13 Tập 1 Cánh Diều| Giải Toán 8

Lời giải Giải Toán 8 trang 13 Tập 1 Cánh Diều chính xác nhất trong Bài 2: Các phép tính với đa thức nhiều biến sẽ giúp học sinh dễ dàng làm bài tập Toán 8. Mời các bạn đón xem:

1 81 lượt xem


Bài giải Toán 8 Bài 2: Các phép tính với đa thức nhiều biến

Luyện tập 2 trang 13 Toán 8 Tập 1: Với ba đa thức A, B, C trong Ví dụ 3, hãy tính:

a) B – C;

b) (B – C) + A.

Lời giải:

Trong Ví dụ 3 có các đa thức: A = x2 – 2xy + y2; B = 2x2 – y2; C = x2 – 3xy.

a) B – C = (2x2 – y2) – (x2 – 3xy)

= 2x2 – y2 – x2 + 3xy = (2x2 – x2) + 3xy – y2

= x2 + 3xy – y2;

b) (B – C) + A = (x2 + 3xy – y2) + (x2 – 2xy + y2)

= x2 + 3xy – y2 + x2 – 2xy + y2

= (x2 + x2) + (3xy – 2xy) + (y2 – y2)

= 2x2 + xy.

Hoạt động 3 trang 13 Toán 8 Tập 1:

a) Tính tích: 3x2 . 8x4;

b) Nêu quy tắc nhân hai đơn thức một biến.

Lời giải:

a) Ta có 3x2 . 8x4 = (3 . 8) (x2 . x4) = 24x6.

b) Quy tắc nhân hai đơn thức một biến:

Muốn nhân hai đơn thức một biến ta làm như sau:

• Nhân các hệ số với nhau và nhân các phần biến với nhau;

• Thu gọn đơn thức nhận được ở tích.

Luyện tập 3 trang 13 Toán 8 Tập 1: Tính tích của hai đơn thức: x3y7 và −2x5y3.

Lời giải:

Tích của hai đơn thức đã cho là:

x3y7 . (−2x5y3) = −2 (x3. x5) (y7. y3) = −2x8y10.

Hoạt động 4 trang 13 Toán 8 Tập 1:

a) Tính tích: 11x3 . (x2 – x + 1);

b) Nêu quy tắc nhân đơn thức với đa thức trong trường hợp một biến.

Lời giải:

a) Ta có: 11x3 . (x2 – x + 1) = 11x3 . x2 – 11x3 . x + 11x3 . 1

= 11x5 – 11x4 + 11x3.

b) Quy tắc nhân đơn thức với đa thức trong trường hợp một biến là:

Muốn nhân một đơn thức với một đa thức, ta nhân đơn thức đó với từng đơn thức của đa thức rồi cộng các kết quả với nhau.

1 81 lượt xem