Giải Toán 8 Trang 17 Tập 1 Cánh Diều| Giải Toán 8

Lời giải Giải Toán 8 trang 17 Tập 1 Cánh Diều chính xác nhất trong Bài 2: Các phép tính với đa thức nhiều biến sẽ giúp học sinh dễ dàng làm bài tập Toán 8. Mời các bạn đón xem:

1 86 lượt xem


Bài giải Toán 8 Bài 2: Các phép tính với đa thức nhiều biến

Bài 3 trang 17 Toán 8 Tập 1Rút gọn biểu thức:

a) (x – y)(x2 + xy + y2);

b) (x + y)(x2 – xy + y2);

c) (4x1)(6y+1)3x8x+43;

d) (x + y)(x – y) + (xy4 – x3y2) : (xy2).

Lời giải:

a) (x – y)(x2 + xy + y2)

= x . x2 + x . xy + x . y2– y . x2 – y . xy– y . y2

= x3 + (x2y – x2y) + (xy2– xy2) – y3= x3 – y3.

b) (x + y)(x2 – xy + y2)

= x . x2 – x . xy + x . y2 + y . x2 – y . xy + y . y2

= x3 – x2y + xy2 + x2y – xy2 + y3

= x3 + (x2y – x2y) + (xy2– xy2) + y3

= x3 + y3.

c) (4x - 1)(6y + 1) - 3x8x+43

= 4x.6y + 4x.1 - 1.6y - 1.1 - 3x.8x - 3x.43

= 24xy + 4x – 6y – 1 – 24x2 – 4x

= 24xy – 24x2 + (4x – 4x) – 6y – 1

= 24xy – 24x2 – 6y – 1.

d) (x + y)(x – y) + (xy4 – x3y2) : (xy2)

= x . x + x . y – x . y – y . y + (xy4) : (xy2) – (x3y2) : (xy2)

= x2 – y2 + y2– x2= (x2 – x2) + (y2– y2) = 0.

Bài 4 trang 17 Toán 8 Tập 1:

a) Rút gọn rồi tính giá trị của biểu thức

P = (5x2 – 2xy + y2) – (x2 + y2) – (4x2 – 5xy + 1)

khi x = 1,2 và x + y = 6,2.

b) Chứng minh giá trị của biểu thức sau không phụ thuộc vào giá trị của biến x:

(x2 – 5x + 4)(2x + 3) – (2x2 – x – 10)(x – 3).

Lời giải:

a) Ta rút gọn biểu thức P như sau:

P = (5x2 – 2xy + y2) – (x2 + y2) – (4x2 – 5xy + 1)

= 5x2 – 2xy + y2–x2 – y2–4x2 + 5xy – 1

= (5x2 –x2 –4x2)+(5xy – 2xy) + (y2– y2) – 1

= 3xy – 1.

Ta có: x = 1,2; x + y = 6,2 suy ra y = 6,2 – x = 6,2 – 1,2 = 5.

Khi đó, giá trị của biểu thức P khi x = 1,2 và y = 5 là:

3 . 1,2 . 5 – 1 = 18 – 1 = 17.

b) Ta có: (x2 – 5x + 4)(2x + 3) – (2x2 – x – 10)(x – 3)

= (2x3 – 10x2+ 8x + 3x2– 15x + 12) –(2x3 – x2 – 10x – 6x2 + 3x + 30)

= (2x3 – 7x2– 7x+ 12) – (2x3 – 7x2 – 7x + 30)

= 2x3 – 7x2– 7x+ 12–2x3 +7x2+ 7x – 30

= (2x3 – 2x3) +(7x2 – 7x2) +(7x – 7x) + (12– 30) –8.

Khi đó, với mọi giá trị của biến x thì (x2 – 5x + 4)(2x + 3) – (2x2 – x – 10)(x – 3)–8.

Vậy giá trị của biểu thức sau không phụ thuộc vào giá trị của biến x.

Bài 5 trang 17 Toán 8 Tập 1:

a) Chứng minh rằng biểu thức P = 5x(2 – x) – (x + 1)(x + 9) luôn nhận giá trị âm với mọi giá trị của biến x.

b) Chứng minh rằng biểu thức Q = 3x2 + x(x – 4y) – 2x(6 – 2y) + 12x + 1 luôn nhận giá trị dương với mọi giá trị của biến x và y.

Lời giải:

a) Ta có: P = 5x(2 – x) – (x + 1)(x + 9)

= (10x – 5x2) – (x2 + x + 9x + 9)

= (10x – 5x2) – (x2 + 10x + 9)

= 10x – 5x– x2 – 10x – 9

= (– 5x– x2) + (10x – 10x) – 9 = – 9.

Khi đó, với mọi giá trị của biến x thì P = – 9.

Vậy biểu thức P luôn nhận giá trị âm với mọi giá trị của biến x.

b) Ta có: Q = 3x2 + x(x – 4y) – 2x(6 – 2y) + 12x + 1

= 3x2 + x2 – 4xy – 12x + 4xy + 12x + 1

= (3x2 + x2) + (4xy – 4xy) + (12x – 12x) + 1

= 4x2 + 1

Vì 4x2≥ 0 nên 4x2 + 1 > 0.

Vậy biểu thức Q luôn nhận giá trị dương với mọi giá trị của biến x và y.

Bài 6 trang 17 Toán 8 Tập 1Bạn Hạnh dự định cắt một miếng bìa có dạng tam giác vuông với độ dài hai cạnh góc vuông lần lượt là 6 (cm), 8 (cm). Sau khi xem xét lại, bạn Hạnh quyết định tăng độ dài cạnh góc vuông 6 (cm) thêm x (cm) và tăng độ dài cạnh góc vuông 8 (cm) thêm y (cm) (Hình 3). Viết đa thức biểu thị diện tích phần tăng thêm của miếng bìa theo x và y.

Toán 8 Bài 2 (Cánh diều): Các phép tính với đa thức nhiều biến (ảnh 1)

Lời giải:

Diện tích tam giác vuông ban đầu là: 12.6.8 = 24 (cm)

Tam giác vuông sau khi mở rộng có độ dài hai cạnh góc vuông lần lượt là x + 6 (cm); y + 8 (cm).

Diện tích tam giác vuông sau khi tăng độ dài hai cạnh góc vuông là:

12.(x+6).(y+8) = 12xy + 4x + 3y + 24

= 24 + 4x + 3y + 24 = 4x + 3y + 48 (cm)

Vậy đa thức biểu thị diện tích phần tăng thêm của miếng bìa theo x và y là: 4x + 3y + 48 (cm).

Bài 7 trang 17 Toán 8 Tập 1Khu vực của nhà bác Xuân có dạng hình vuông. Bác Xuân muốn dành một mảnh đất có dạng hình chữ nhật ở góc khu vườn để trồng rau (Hình 4). Biết diện tích của mảnh đất không trồng rau bằng 475 m2. Tính độ dài x (m) của khu vườn đó.

Toán 8 Bài 2 (Cánh diều): Các phép tính với đa thức nhiều biến (ảnh 1)

Lời giải:

Trong Hình 4, ta thấy:

• Khu vực nhà bác Xuân là hình vuông có cạnh x (m)

Diện tích khu vực nhà bác Xuân là: x2 (m2).

• Mảnh đất trồng rau có dạng hình chữ nhật có chiều dài bằng x – 10 (m) và chiều rộng bằng x – 15 (m).

Diện tích mảnh đất trồng rau là: (x – 10)(x – 15) = x2 – 10x – 15x + 150

= x2 – 25x + 150 (m2).

Theo đề bài, diện tích của mảnh đất không trồng rau bằng 475 m2 nên ta có:

x– (x2 – 25x + 150) 475

x– x2 + 25x – 150 = 475

25x – 150 = 475

25x = 625

x = 25.

Vậy khu vườn có độ dài 25 m.

1 86 lượt xem