Câu hỏi:

58 lượt xem
Tự luận

 Giải bài tập Toán 10 Bài tập cuối chương 3

A. Trắc nghiệm

Giải Toán 10 trang 44 Tập 1

Bài 3.12 trang 44 Toán 10 Tập 1: Cho tam giác ABC có B^=135o. Khẳng định nào sau đây là đúng?

a)

A. S=12ca.          

B. S=24ac. 

C. S=24bc.

D. S=24ca.

b)

A. R=asinA.

B. R=22b.

C. R=22c.

D. R=22a.

c)

A. a2=b2+c2+2ab.

B. bsinA=asinB.

C. sinB=22.

D. b2 = c2 + a2 – 2ca.cos135o.

Xem đáp án

Lời giải

Hướng dẫn giải:

Lời giải:

Tam giác ABC có BC = a; AC = b; AB = c; B^=135o.

Cho tam giác ABC có góc B = 135 độ. Khẳng định nào sau đây là đúng (ảnh 1)

a) Diện tích tam giác ABC:

S=12ac.sinB=12ac.sin135o=24ac.

Chọn D.

b) Theo định lí sin, ta có:

asinA=bsinB=csinC=2R

A. R=asinA sai vì R=a2sinA

B. R=22b

Mà sinB=22R=b2sinB=b2.22=22b.

Do đó B đúng.

C. R=22c (loại vì không có dữ kiện về góc C nên không thể tính R theo c).

D. R=22a (loại vì không có dữ kiện về góc A nên không thể tính R theo a).

Chọn B.

c)

A. a2=b2+c2+2ab.

Vì theo định lí côsin, ta có: a= b+ c− 2bc . cosA

Không đủ dữ kiện để suy ra: a2=b2+c2+2ab.

Do đó A sai.

B. bsinA=asinB.

Theo định lí sin, ta có: asinA=bsinB

Nên bsinAasinB.

Do đó B sai.

C. sinB=22.

Vì theo câu a, sinB=22.

Do đó C sai.

D. b2 = c2 + a2 – 2ca . cos135o. đúng.

Theo định lý côsin ta có:

b2 = c2 + a2 − 2ca . cosB (*)

Mà B^=135°cosB = cos 135o.

Thay vào (*) ta được: b2 = c2 + a2 − 2ca . cos 135o.

Do đó D đúng.

Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ