Câu hỏi:
79 lượt xemBài 3.16 trang 44 Toán 10 Tập 1: Cho tam giác ABC có trung tuyến AM. Chứng minh rằng:
a)
b) MA2 + MB2 – AB2 = 2MA.MB.cos và MA2 + MC2 – AC2 = 2MA.MC.cos;
c) (công thức đường trung tuyến).
Lời giải
Hướng dẫn giải:
Lời giải:
a) Ta có:
Vậy (đpcm)
b) Áp dụng định lí côsin trong ΔAMB, ta có:
AB2 = MA2 + MB2 – 2MA.MB.cos
MA2 + MB2 – AB2 = 2MA.MB.cos (1)
Áp dụng định lí côsin trong ΔAMC, ta có:
AC2 = MA2 + MC2 – 2MA.MC.cos
MA2 + MC2 – AC2 = 2MA.MC.cos (2)
Từ (1) và (2) suy ra điều phải chứng minh.
c) Từ (1) suy ra: MA2 = AB2 – MB2 + 2MA.MB.cos
Từ (2) suy ra: MA2 = AC2 – MC2 + 2MA.MC.cos
Cộng vế với vế, ta được:
2MA2 = (AB2 – MB2 + 2MA.MB.cos) + (AC2 – MC2 + 2MA.MC.cos)
2MA2 = AB2 + AC2 – MB2 – MC2 + 2MA.MB.cos + 2MA.MC.cos
Mà (do AM là trung tuyến) nên:
2MA2 = AB2 + AC2 – – + 2MA.MB.cos + 2MA.MB.cos
2MA2 = AB2 + AC2 – + 2MA.MB.(cos + cos)
2MA2 = AB2 + AC2 –
(công thức đường trung tuyến).
Bài 3.15 trang 44 Toán 10 Tập 1: Cho tam giác ABC có AC = 10. Tính a, R, S, r.