Câu hỏi:
22 lượt xemLời giải
Hướng dẫn giải:
GT |
∆ABC, ∆ABD, AD = BC, IC = ID,
|
KL |
a) IA = IB; b) IH là tia phân giác của góc AIB. |
Chứng minh (Hình 53)
a) Vì (giả thiết) nên tam giác ADI vuông tại D, tam giác BCI vuông tại C, tam giác AHI và BHI vuông tại H.
Xét tam giác ADI (vuông tại D) và tam giác BCI (vuông tại C) có:
AD = BC (giả thiết)
DI = CI (giả thiết)
Suy ra ∆ADI = ∆BCI (hai cạnh góc vuông)
Suy ra AI = BI (hai cạnh tương ứng)
Vậy AI = BI.
b) Xét tam giác AHI (vuông tại H) và tam giác BHI (vuông tại H) có:
IH là cạnh chung
AI = BI (chứng minh trên)
Suy ra ∆AHI = ∆BHI (cạnh huyền – cạnh góc vuông)
Do đó (hai góc tương ứng)
Nên tia IH là tia phân giác của góc AIB.
Vậy IH là tia phân giác của góc AIB.