Câu hỏi:

95 lượt xem
Tự luận

Có hai xã cùng ở một bên bờ sông Lam. Các kĩ sư muốn bắc một cây cầu qua sông Lam cho người dân hai xã. Để thuận lợi cho người dân đi lại, các kĩ sư cần phải chọn vị trí của cây cầu sao cho tổng khoảng cách từ hai xã đến chân cầu là nhỏ nhất

Xem đáp án

Lời giải

Hướng dẫn giải:

Vị trí của hai xã và bờ sông Lam được mô tả như hình vẽ.

GT

Đường thẳng d,

A, B nằm cùng một phía với d

AHd (H  d), AH = HC

BC cắt d tại E, M  d

KL

Khẳng định MA + MB > EA + EB là đúng hay sai? Vì sao?

Chứng minh (Hình dưới đây):

Giải Toán 7 Bài 5 (Cánh diều): Trường hợp bằng nhau thứ hai của tam giác: cạnh – góc – cạnh (ảnh 1) 

Nối đoạn thẳng CM.

+) Vì AHd (H  d) nên AHE^=CHE^=90° 

Do đó tam giác AHE (vuông tại H) và tam giác CHE (vuông tại H).

Xét tam giác AHE (vuông tại H) và tam giác CHE (vuông tại H) ta có:

AH = CH (giả thiết)

HE là cạnh chung

Suy ra ∆AHE = ∆CHE (hai cạnh góc vuông)

Do đó AE = CE (hai cạnh tương ứng)

Nên EA + EB = EC + EB = BC. (1)

+) Chứng minh tương tự với hai tam giác AHM (vuông tại H) và CHM (vuông tại A) có:

AH = CH (giả thiết)

AM là cạnh chung

Suy ra ∆AHM = ∆CHM (hai cạnh góc vuông)

Do đó AM = CM (hai cạnh tương ứng)

Nên MA + MB = MC + MB (2)

+ Xét tam giác BCM có: MC + MB > BC (bất đẳng thức tam giác) (3)

Từ (1), (2) và (3) ta có: MA + MB > EA + EB.

Vậy MA + MB > EA + EB.

CÂU HỎI HOT CÙNG CHỦ ĐỀ