Câu hỏi:

39 lượt xem
Tự luận

 Cho tam giác ABC. Đường trung trực của hai cạnh AB và AC cắt nhau tại điểm O nằm trong tam giác. M là trung điểm của BC. Chứng minh:

a) OM  BC;

b) MOB^=MOC^ 

Xem đáp án

Lời giải

Hướng dẫn giải:

GT

ABC, O là giao điểm hai đường trung trực của AB và AC,

O nằm trong tam giác,

M là trung điểm của BC

KL

a) OM  BC;

b) MOB^=MOC^.

Chứng minh (Hình vẽ dưới đây):

Giải Toán 7 Bài 12 (Cánh diều): Tính chất ba đường trung trực của tam giác (ảnh 1) 

a) Do ba đường trung trực trong tam giác đồng quy tại một điểm mà tam giác ABC có O là giao điểm hai đường trung trực của đoạn thẳng AB và đoạn thẳng AC (giả thiết).

Do đó đường trung trực của đoạn thẳng BC đi qua O.

Lại có M là trung điểm của BC nên OM là đường trung trực của đoạn thẳng BC.

Do đó OM  BC.

Vậy OM  BC.

b) Do O nằm trên đường trung trực của đoạn thẳng BC nên OB = OC (tính chất đường trung trực)

Xét OMB và OMC có:

OM là cạnh chung,

MB = MC (M là trung điểm của BC),

OB = OC (chứng minh trên)

Do đó OMB = OMC (c.c.c).

Suy ra MOB^=MOC^ (hai góc tương ứng).

Vậy MOB^=MOC^

CÂU HỎI HOT CÙNG CHỦ ĐỀ