Câu hỏi:
104 lượt xemMột người đứng ở điểm A trên bờ sông rộng 300 m, chèo thuyền đến vị trí D, sau đó chạy bộ đến vị trí B cách C một khoảng 800 m (hình vẽ). Vận tốc chèo thuyền là 6 km/h, vận tốc chạy bộ là 10 km/h và giả sử vận tốc dòng nước không đáng kể.
Biết tổng thời gian người đó chèo thuyền và chạy bộ từ A đến B là 7,2 phút, khoảng cách từ vị trí C đến D là
250 m;
Lời giải
Hướng dẫn giải:
Đáp án đúng là: B
Đổi: 300 m = 0,3 km; 800 m = 0,8 km; 7,2 phút = 0,12 giờ.
Gọi độ dài khoảng cách từ vị trí C đến D là x (km, x > 0).
Khi đó ta có: AC = 0,3 km; CD = x km; BC = 0,8 km; DB = BC – CD = 0,8 – x (km).
Lại có tam giác ACD vuông tại C, áp dụng định lý Pythagore ta có:
AD2 = AC2 + CD2 = (0,3)2 + x2 = 0,09 + x2
Suy ra (km)
Do đó khoảng cách từ vị trí A đến vị trí D là (km), mà vận tốc chèo thuyền là 6 km/h và vận tốc dòng nước không đáng kể nên thời gian người đó chèo thuyền từ vị trí A đến vị trí D là (giờ).
Quãng đường từ vị trí D đến vị trí B là 0,8 – x (km) và vận tốc chạy bộ là 10 km/h nên thời gian người đó chạy bộ từ vị trí D đến vị trí B là (giờ).
Tổng thời gian người đó chèo thuyền là t1 + t2 = t = 0,12 (giờ).
Khi đó ta có phương trình:
Bình phương cả hai vế của (1) ta được:
25.(0,09 + x2) = (1,2 + 3x)2
⇔ 2,25 + 25x2 = 1,44 + 7,2x + 9x2
⇔ 16x2 – 7,2x + 0,81 = 0
⇔ x = 0,225 (thỏa mãn điều kiện x > 0)
Thay x = 0,225 vào (1) ta thấy thỏa mãn.
Vậy khoảng cách từ vị trí C đến D là 0,225 km = 225 m.