Câu hỏi:

190 lượt xem
Tự luận

So sánh A=12122+123124+...+129912100A = \frac{1}{2} - \frac{1}{{{2^2}}} + \frac{1}{{{2^3}}} - \frac{1}{{{2^4}}} + ... + \frac{1}{{{2^{99}}}} - \frac{1}{{{2^{100}}}}13\frac{1}{3}.

Xem đáp án

Lời giải

Hướng dẫn giải:

Ta có:

\(A = \frac{1}{2} - \frac{1}{{{2^2}}} + \frac{1}{{{2^3}}} - \frac{1}{{{2^4}}} + ... + \frac{1}{{{2^{99}}}} - \frac{1}{{{2^{100}}}}\)

Suy ra \(2A = 2\left( {\frac{1}{2} - \frac{1}{{{2^2}}} + \frac{1}{{{2^3}}} - \frac{1}{{{2^4}}} + ... + \frac{1}{{{2^{99}}}} - \frac{1}{{{2^{100}}}}} \right)\)

\(2A = 1 - \frac{1}{2} + \frac{1}{{{2^2}}} - \frac{1}{{{2^3}}} + ... + \frac{1}{{{2^{98}}}} - \frac{1}{{{2^{99}}}}\)

\(2A = 1 - \frac{1}{2} + \frac{1}{{{2^2}}} - \frac{1}{{{2^3}}} + ... + \frac{1}{{{2^{98}}}} - \frac{1}{{{2^{99}}}}\)

Do đó \[2A + A = \left( {1 - \frac{1}{2} + \frac{1}{{{2^2}}} - \frac{1}{{{2^3}}} + ... + \frac{1}{{{2^{98}}}} - \frac{1}{{{2^{99}}}}} \right) + \left( {\frac{1}{2} - \frac{1}{{{2^2}}} + \frac{1}{{{2^3}}} - \frac{1}{{{2^4}}} + ... + \frac{1}{{{2^{99}}}} - \frac{1}{{{2^{100}}}}} \right)\]

Suy ra \[3A = 1 - \frac{1}{{{2^{100}}}}\]

\[A = \frac{1}{3} - \frac{1}{{{{3.2}^{100}}}}\]

\[\frac{1}{{{{3.2}^{100}}}} > 0\] nên \(\frac{1}{3} - \frac{1}{{{{3.2}^{100}}}} < \frac{1}{3}\).

Vậy \(A < \frac{1}{3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ