Một người thợ đang cố gắng đặt tấm kính ABCD (mép AB không song song với CD) dựa vào tường sao cho mép kính CD song song với đường chân tường, còn mép AB nằm hoàn toàn trên tường. Sau một hồi loay hoay, người thợ vẫn không thể đặt được tấm kính như mong muốn. Hãy giải thích tại sao.
Có cách nào để đặt tấm kính để một mép kính song song với đường chân tường, một mép kính khác nằm hoàn toàn trên tường không?
Giải SBT Toán 11 (Kết nối tri thức) Bài tập cuối chương 4
Cho hình lăng trụ tứ giác ABCD.A’B’C’D’. Gọi M, N, M’, N’ lần lượt là trung điểm của các cạnh AB, CD, A’B’, C’D’.
a) Chứng minh rằng bốn điểm M, N, M’, N’ đồng phẳng và tứ giác MNN’M’ là hình bình hành
b) Giả sử MN không song song với BC. Xác định giao tuyến của hai mặt phẳng (MNN’M’) và (BCC’B’).
Giải SBT Toán 11 (Kết nối tri thức) Bài tập cuối chương 4
Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB//CD). Gọi O là một điểm nằm trong tam giác SAD.
a) Xác định giao điểm của đường thẳng AO và mặt phẳng (SCD).
b) Xác định giao tuyến của hai mặt phẳng (SBO) và (SAC).
c) Xác định giao điểm của đường thẳng BO và mặt phẳng (SAC).
Giải SBT Toán 11 (Kết nối tri thức) Bài tập cuối chương 4
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Mặt phẳng (P) chứa đường thẳng AD và cắt hai cạnh SB, SC lần lượt tại E, F.
a) Xác định giao tuyến của hai mặt phẳng (EAB) và (FCD).
b) Chứng minh rằng tứ giác AEFD là hình thang.
c) Xác định giao tuyến của hai mặt phẳng (ECD) và (FAB).
d) Chứng minh rằng giao tuyến của hai mặt phẳng (ECD) và (FAB) song song với giao tuyến của hai mặt phẳng (EAB) và (FCD).
Giải SBT Toán 11 (Kết nối tri thức) Bài tập cuối chương 4
Cho hình chóp ngũ giác S.ABCDE. Giả sử AB song song với DE.
a) Xác định giao tuyến của hai mặt phẳng (SAD) và (SBE).
b) Xác định giao tuyến của hai mặt phẳng (SAB) và (SDE).
c) Giả sử giao tuyến của hai mặt phẳng (SAE) và (SBC) song song với đường thẳng AE. Chứng minh AE//BC
Giải SBT Toán 11 (Kết nối tri thức) Bài tập cuối chương 4
Cho mặt phẳng (P) và điểm A nằm ngoài mặt phẳng (P). Khẳng định nào sau đây là đúng?
A. Qua A có vô số mặt phẳng song song với (P)
B. Qua A có đúng một mặt phẳng song song với (P)
C. Qua A không có mặt phẳng song song với (P)
D. Qua A có đúng hai mặt phẳng song song với (P)
Giải SBT Toán 11 (Kết nối tri thức) Bài tập cuối chương 4
Cho hai mặt phẳng (P) và (Q) cắt nhau theo giao tuyến d. Khi đó
A. d là tập hợp tất cả các điểm nằm trong mặt phẳng (P) và nằm ngoài mặt phẳng Q
B. d là tập hợp tất cả các điểm nằm ngoài mặt phẳng (P) và nằm trong mặt phẳng Q
C. d là tập hợp tất cả các điểm nằm ngoài cả hai mặt phẳng (P) và (Q)
D. d là tập hợp tất cả các điểm nằm trong cả hai mặt phẳng (P) và (Q)
Giải SBT Toán 11 (Kết nối tri thức) Bài tập cuối chương 4
Cho tứ diện ABCD có E, F lần lượt là trung điểm của các cạnh BC, CD. Mặt phẳng (P) chứa đường thẳng EF và cắt mặt phẳng (ABD) theo giao tuyến d. Khi đó
A. d song song với BC
B. d song song với AB
C. d song song với BD
D. d song song với CD
Giải SBT Toán 11 (Kết nối tri thức) Bài tập cuối chương 4
Cho ba mặt phẳng (P), (Q), (R) đôi một song song với nhau. Đường thẳng d cắt các mặt phẳng (P), (Q), (R) lần lượt tại A, B, C. Đường thẳng d’ cắt các mặt phẳng (P), (Q), (R) lần lượt tại A’, B’, C’. Biết rằng , tỉ số bằng
A.
B.
C.
D. .
Giải SBT Toán 11 (Kết nối tri thức) Bài tập cuối chương 4
Cho tứ diện ABCD. Một mặt phẳng cắt các cạnh AB, BC, CD, DA của tứ diện lần lượt tại M, N, P, Q. Khi đó
A. MN, AC, PQ đồng quy.
B. MN, AC, PQ đôi một song song.
C. MN, AC, PQ đôi một chéo nhau.
D. MN, AC, PQ đôi một song song hoặc chéo nhau.
Giải SBT Toán 11 (Kết nối tri thức) Bài tập cuối chương 4
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AB, CD và (P) là mặt phẳng cố định không song song với MN. Gọi A’, B’, C’, D’, M’, N’ lần lượt là hình chiếu của A, B, C, D, M, N qua phép chiếu lên mặt phẳng (P) theo phương MN.
a) Chứng minh rằng hai điểm M’ và N’ trùng nhau.
b) Chứng minh rằng bốn điểm A’, B’, C’, D’ là bốn đỉnh của một hình bình hành.
Giải SBT Toán 11 (Kết nối tri thức) Bài 14: Phép chiếu song song
Một chiếc bình nước hình trụ được đặt trên bàn, lượng nước trong bình bằng đúng một nửa dung tích của bình. Hoàng đặt một chiếc ống hút vào trong bình sao cho cho một đầu của ống hút chạm vào đáy bình còn một đầu chạm vào miệng bình. Hoàng nói rằng độ dài của phần ống hút bị ướt bằng độ dài của toàn bộ ống hút. Hỏi Hoàng nói đúng hay sai? Vì sao?
Giải SBT Toán 11 (Kết nối tri thức) Bài 13: Hai mặt phẳng song song
Cho hình hộp ABCD.A’B’C’D’. Gọi O là giao điểm của các đường chéo của hình hộp. Mặt phẳng qua O và song song với mặt phẳng (ABCD) cắt các cạnh AA’, BB’, CC’, DD’ lần lượt tại M, N, P, Q.
a) Chứng minh rằng M, N, P, Q lần lượt là trung điểm của các cạnh AA’, BB’, CC’, DD’.
b) Chứng minh rằng ABCD.MNPQ là hình hộp.
Giải SBT Toán 11 (Kết nối tri thức) Bài 13: Hai mặt phẳng song song
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E là một điểm bất kì thuộc cạnh SA và (P) là mặt phẳng qua E song song với mặt phẳng (ABCD).
a) Xác định giao tuyến của mặt phẳng (P) và các mặt bên của hình chóp.
b) Hình tạo bởi các giao tuyến là hình gì? Giải thích vì sao.
Giải SBT Toán 11 (Kết nối tri thức) Bài 13: Hai mặt phẳng song song
Cho tứ diện ABCD và một điểm O nằm trong tam giác BCD. Gọi (P) là mặt phẳng qua O và song song với mặt phẳng (ABD).
a) Xác định giao tuyến của mặt phẳng (P) và mặt phẳng (BCD).
b) Xác định giao tuyến của mặt phẳng (P) và các mặt còn lại của tứ diện.
Giải SBT Toán 11 (Kết nối tri thức) Bài 13: Hai mặt phẳng song song
Cho hình bình hành ABCD. Qua A, B, C, D lần lượt vẽ bốn đường a, b, c, d đôi một song song và không nằm trong mặt phẳng (ABCD).
a) Chứng minh rằng hai mặt phẳng mp(a,b) và mp(c,d) song song với nhau.
b) Chứng minh rằng hai mặt phẳng mp(a,d) và mp(b,c) song song với nhau.
c) Một mặt phẳng cắt bốn đường thẳng a, b, c, d lần lượt tại A’, B’, C’, D’. Chứng minh rằng tứ giác A’B’C’D’ là hình bình hành.
Giải SBT Toán 11 (Kết nối tri thức) Bài 13: Hai mặt phẳng song song
Để dựng dây phơi quần áo, bác Việt lắp hai thanh sắt đứng có chiều dài bằng nhau trên mặt đất và căng dây nối hai đầu còn lại của hai thanh sắt (H.4.19). Khi đó, dây phơi có song song với mặt đất không? Giải thích vì sao.
Giải SBT Toán 11 (Kết nối tri thức) Bài 12: Đường thẳng và mặt phẳng song song
Cho hình chóp S.ABCD có đáy là hình thang (AB//CD). Gọi E là một điểm bất kì thuộc cạnh SA. Gọi (P) là mặt phẳng qua E và song song với hai đường thẳng AB và SC.
a) Xác định giao tuyến của mặt phẳng (P) và mặt phẳng (SAC), từ đó tìm một điểm chung của mặt phẳng (P) và mặt phẳng (ABCD).
b) Xác định giao tuyến của mặt phẳng (P) và mặt phẳng (ABCD).
c) Xác định giao tuyến của mặt phẳng (P) và các mặt còn lại của hình chóp.
Giải SBT Toán 11 (Kết nối tri thức) Bài 12: Đường thẳng và mặt phẳng song song