Cho hình chóp tứ giác S.ABCD và E là một điểm bất kì thuộc cạnh SA. Gọi (P) là mặt phẳng qua E và song song với hai đường thẳng SB, SD. Gọi M, N lần lượt là giao điểm của (P) và các cạnh AB, AD.
a) Chứng minh rằng EM//SB và EN//SD.
b) Giả sử đường thẳng MN cắt các đường thẳng BC, CD. Xác định giao tuyến của mặt phẳng (P) và các mặt phẳng (SBC), (SCD).
Giải SBT Toán 11 (Kết nối tri thức) Bài 12: Đường thẳng và mặt phẳng song song
Một chiếc thang được đặt sao cho hai đầu của chân thang dựa vào tường, hai đầu còn lại nằm trên sàn nhà (H. 4.12). Biết rằng chiếc thang có dạng hình chữ nhật, hãy giải thích vì sao hai đầu của chân thang nằm trên sàn nhà lại cách đều chân tường.
Giải SBT Toán 11 (Kết nối tri thức) Bài 11: Hai đường thẳng song song
Cho tứ diện ABCD. Một mặt phẳng cắt bốn cạnh AB, BC, CD, DA lần lượt tại các điểm M, N, P, Q.
a) Chứng minh rằng các đường thẳng MN, PQ, AC đôi một song song hoặc đồng quy.
b) Chứng minh rằng các đường thẳng MQ, NP, BD đôi một song song hoặc đồng quy.
Giải SBT Toán 11 (Kết nối tri thức) Bài 11: Hai đường thẳng song song
Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB//CD). Gọi E, F lần lượt là trọng tâm của các tam giác SAD, SBC.
a) Gọi M, N lần lượt là trung điểm của các cạnh AD, BC. Chứng minh rằng EF//MN, từ đó suy ra EF//AB.
b) Xác định các giao tuyến của mặt phẳng (AEF) với các mặt của hình chóp.
c) Trong các giao tuyến tìm được ở câu b, giao tuyến nào song song với đường thẳng EF?
Giải SBT Toán 11 (Kết nối tri thức) Bài 11: Hai đường thẳng song song
Cho tứ diện ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA.
a) Xác định giao tuyến của hai mặt phẳng (ANP) và (CMQ).
b) Xác định giao tuyến của hai mặt phẳng (ANP) và (ABD).
c) Xác định giao tuyến của hai mặt phẳng (CMQ) và (BCD).
d) Chứng minh rằng các giao tuyến ở trên đôi một song song với nhau.
Giải SBT Toán 11 (Kết nối tri thức) Bài 11: Hai đường thẳng song song
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là một điểm bất kì thuộc cạnh SC.
a, Xác định các giao tuyến của mặt phẳng (MAB với các mặt của hình chóp.
b, Xác định các giao tuyến của mặt phẳng (MAD với các mặt của hình chóp.
Giải SBT Toán 11 (Kết nối tri thức) Bài 11: Hai đường thẳng song song
Cho tứ diện ABCD. Gọi M, N, P lần lượt là các điểm thuộc các cạnh AB, BC, CD. Xác định giao điểm của đường thẳng AD và mặt phẳng (MNP) trong các trường hợp sau:
a, Đường thẳng NP song song với đường thẳng BD.
b, Đường thẳng NP cắt BD.
Giải SBT Toán 11 (Kết nối tri thức) Bài 11: Hai đường thẳng song song
Một số chiếc bàn có thiết kế khung sắt là hai hình chữ nhật có thể xoay quanh một trục, mặt bàn là một tấm gỗ phẳng được đặt lên phần khung như trong hình 4.6. Tính chất hình học nào giải thích việc mặt bàn có thể được giữ cố định bởi khung sắt? (Giả sử khung sắt chắc chắn và được đặt cân đối).
Giải SBT Toán 11 (Kết nối tri thức) Bài 10: Đường thẳng và mặt phẳng trong không gian
Bạn Huy đổ nước màu vào một chiếc bể cá có các mặt đều làm bằng kính phẳng. Sau một vài hôm nước bay hơi một phần và để lại trên thành bể cá các vệt màu như trong hình. Huy quan sát thấy rằng, dù bể cá có hình như thế nào, miễn là các mặt đều phẳng thì vệt màu trên mỗi thành bể đều là các đường thẳng. Hãy giải thích vì sao.
Giải SBT Toán 11 (Kết nối tri thức) Bài 10: Đường thẳng và mặt phẳng trong không gian
Cho hai mặt phẳng (P) và (Q) cắt nhau theo giao tuyến d và một điểm O nằm ngoài cả hai mặt phẳng đó. Gọi A, B là hai điểm phân biệt thuộc mặt phẳng (P) sao cho AB cắt d tại C. Gọi D, E lần lượt là giao điểm của hai đường thẳng OA, OB và mặt phẳng (Q). Chứng minh rằng ba điểm C, D, E thẳng hàng.
Giải SBT Toán 11 (Kết nối tri thức) Bài 10: Đường thẳng và mặt phẳng trong không gian
Cho hình tứ diện SABC và các điểm A’,B’,C’ lần lượt thuộc các cạnh SA, SB, SC. Giả sử hai đường thẳng B’C’ và BC cắt nhau tại D, hai đường thẳng C’A’ và CA cắt nhau tại E và hai đường thẳng A’B’ và AB cắt nhau tại F. Chứng minh rằng ba điểm D, E, F thẳng hàng.
Giải SBT Toán 11 (Kết nối tri thức) Bài 10: Đường thẳng và mặt phẳng trong không gian
Cho tứ diện ABCD và các điểm M, N, P lần lượt thuộc các cạnh AB, AC, AD. Gọi O là một điểm nằm trong tam giác BCD.
a) Xác định giao tuyến của hai mặt phẳng (ABO) và (ACD).
b) Xác định giao tuyến của hai mặt phẳng (ABO) và (MNP).
c) Xác định giao điểm của đường thẳng AO và mặt phẳng (MNP).
Giải SBT Toán 11 (Kết nối tri thức) Bài 10: Đường thẳng và mặt phẳng trong không gian
Cho tứ diện ABCD. Gọi E, F là các điểm lần lượt thuộc cạnh AB, AC sao cho và AF = 2CF. Gọi O là một điểm nằm trong tam giác BCD.
a) Xác định giao tuyến của hai mặt phẳng (OEF) và (ABD).
b) Xác định giao điểm (nếu có) của đường thẳng AD và mặt phẳng (OEF).
Giải SBT Toán 11 (Kết nối tri thức) Bài 10: Đường thẳng và mặt phẳng trong không gian
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AB, CD. Gọi P là một điểm thuộc cạnh BC sao cho PC = 2PB.
a) Xác định giao điểm của đường thẳng BD và mặt phẳng (MNP).
b) Xác định giao điểm của đường thẳng AC và mặt phẳng (MNP).
c) Xác định giao điểm của đường thẳng AD và mặt phẳng (MNP).
Giải SBT Toán 11 (Kết nối tri thức) Bài 10: Đường thẳng và mặt phẳng trong không gian
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của các cạnh BC, CD.
a) Xác định giao tuyến của hai mặt phẳng (SAM) và (SCD).
b) Xác định giao tuyến của hai mặt phẳng (SBN) và (SAD).
c) Xác định giao tuyến của hai mặt phẳng (SAM) và (SBN).
Giải SBT Toán 11 (Kết nối tri thức) Bài 10: Đường thẳng và mặt phẳng trong không gian
Cho hình chóp S.ABCD. Gọi O là giao điểm của AC và BD. Gọi M là một điểm bất kì thuộc cạnh SC.
a) Xác định giao tuyến của hai mặt phẳng (AMO) và (SCD).
b) Xác định giao tuyến của hai mặt phẳng (BMO) và (SCD).
Giải SBT Toán 11 (Kết nối tri thức) Bài 10: Đường thẳng và mặt phẳng trong không gian
Bạn Chi vào website của một cửa hàng bán điện thoại tìm hiểu và đã thống kê số lượng một loại điện thoại theo giá bán cho kết quả như sau:
a) Đọc và giải thích mẫu số liệu ghép nhóm này.
b) 50% loại điện thoại trên có giá dưới bao nhiêu?
Giải SBT Toán 11 (Kết nối tri thức) Bài tập cuối chương 3
Nồng độ cồn trong hơi thở (đơn vị tính là miligram/1 lít khí thở) của 20 lái xe ô tô vi phạm được cho như sau:
Theo quy định, mức phạt nồng độ cồn đối với lái xe ô tô như sau:
Mức 1. Nồng độ cồn trong hơi thở chưa vượt quá 0,25 phạt từ 6 đến 8 triệu đồng;
Mức 2. Nồng độ cồn trong hơi thở từ trên 0,25 đến 0,4 phạt từ 16 đến 18 triệu đồng;
Mức 3. Nồng độ cồn trong hơi thở vượt quá 0,4 phạt từ 30 đến 40 triệu đồng.
a) Lập bảng thống kê biểu diễn số lượng lái xe vi phạm theo mức tiền bị phạt.
b) Trung bình mỗi lái xe bị phạt bao nhiêu tiền? Tổng số tiền phạt của 20 lái xe khoảng bao nhiêu?
Giải SBT Toán 11 (Kết nối tri thức) Bài tập cuối chương 3