Câu hỏi:
145 lượt xemBảng sau đây cho biết chiều cao của các học sinh lớp 12A và 12B.
a) Tìm khoảng biến thiên, khoảng tứ phân vị cho các mẫu số liệu ghép nhóm về chiều cao của học sinh lớp 12A, 12B.
b) Để so sánh độ phân tán về chiều cao của học sinh hai lớp này ta nên dùng khoảng biến thiên hay khoảng tứ phân vị? Vì sao?
Lời giải
Hướng dẫn giải:
a) Lớp 12A: Khoảng biến thiên:
Ta có cỡ mẫu . Giả sử là chiều cao của các học sinh lớp 12A và giả sử dãy số liệu gốc này đã được sắp xếp theo thứ tự không giảm.
Vì và nên nhóm chứa tứ phân vị thứ nhất là nhóm và tứ phân vị thứ nhất là:
Vì và nên nhóm chứa tứ phân vị thứ ba là nhóm và tứ phân vị thứ ba là:
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:
Lớp 12B: Khoảng biến thiên:
Ta có cỡ mẫu . Giả sử là chiều cao của các học sinh lớp 12B và giả sử dãy số liệu gốc này đã được sắp xếp theo thứ tự không giảm.
Vì và nên nhóm chứa tứ phân vị thứ nhất là nhóm và ta có:
Vì và nên nhóm chứa tứ phân vị thứ ba là nhóm và tứ phân vị thứ ba là:
Khoảng biến thiên của mẫu số liệu ghép nhóm là:
b) Để so sánh độ phân tán về chiều cao của học sinh hai lớp này, ta nên dùng khoảng tứ phân vị vì khoảng tứ phân vị chỉ phụ thuộc vào nửa giữa của mẫu số liệu, không bị ảnh hưởng bởi các giá trị bất thường.
Chỉ ra rằng khoảng biến thiên của mẫu số liệu ghép nhóm trong Bảng 3.1 lớn hơn khoảng biến thiên của mẫu số liệu gốc.
Nhóm | ... | ... | |||
Tần số | m1 | ... | mi | ... | mk |
Bảng 3.1
Thời gian hoàn thành bài kiểm tra môn Toán của các bạn trong lớp 12C được cho trong bảng sau:
Thời gian (phút) | [25;30) | [30;35) | [35;40) | [40;45) |
Số học sinh | 8 | 16 | 4 | 2 |
a) Tính khoảng biến thiên R cho mẫu số liệu ghép nhóm trên.
b) Nếu biết học sinh hoàn thành bài kiểm tra sớm nhất mất 27 phút và muộn nhất mất 43 phút thì khoảng biến thiên của mẫu số liệu gốc là bao nhiêu?
Một người ghi lại thời gian đàm thoại của một số cuộc gọi cho kết quả như bảng sau:
Thời gian t (phút) | Số cuộc gọi |
8 | |
17 | |
25 | |
20 | |
10 |
Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm trên.