Câu hỏi:
68 lượt xemBài 8.7 trang 70 Toán 10 Tập 2: Từ các chữ số 0, 1, 2, 3, 4 có thể lập được bao nhiêu số tự nhiên có ba chữ số khác nhau?
Lời giải
Hướng dẫn giải:
Lời giải
Để lập số tự nhiên có 3 chữ số khác nhau từ các chữ số 0, 1, 2, 3, 4, ta cần thực hiện 2 công đoạn: chọn chữ số hàng trăm và chọn 2 chữ số hàng chục và hàng đơn vị.
- Chọn chữ số hàng trăm từ các chữ số 0, 1, 2, 3, 4, chữ số này phải khác 0, nên có 4 cách chọn.
- Chọn 2 chữ số tiếp theo từ các chữ số 0, 1, 2, 3, 4, hai chữ số này khác nhau và khác chữ số hàng trăm, nên số cách chọn chính là số chỉnh hợp chập 2 của 4. Do đó có: cách chọn.
Vậy theo quy tắc nhân, có 4 . 12 = 48 số tự nhiên có 3 chữ số khác nhau được lập từ các chữ số 0, 1, 2, 3, 4.