Câu hỏi:
148 lượt xemCho đoạn thẳng AB và điểm M nằm giữa A và B (MA < MB). Vẽ tia Mx vuông góc với AB tại M, trên tia Mx lấy hai điểm C và D sao cho MA = MC, MD = MB. Tia AC vuông cắt BD tại E. Khẳng định nào sau đây là sai?
DM là đường cao của ∆ABD;
BC là đường cao của ∆ABD;
Cả A, B, C đều sai.
Lời giải
Hướng dẫn giải:
Đáp án đúng là: D
Do MA = MC và nên tam giác AMC vuông cân tại M
Do đó nên (đối đỉnh với góc ACM).
Tương tự, ta có ∆BMD vuông cân tại M nên
Từ đó suy ra
Suy ra hay AC ⊥ BD.
Trong ∆ABD, hai đường cao AE và DM cắt nhau nên C là trực tâm của ∆ABD.
Do đó BC là đường cao thứ ba của ∆ABD.
Khi đó A, B, C đều là khẳng định đúng.
Vậy phương án D là khẳng định sai. Ta chọn phương án D.