Câu hỏi:
49 lượt xemTrên đường thẳng d có ba điểm phân biệt I, J, K (J ở giữa I và K). Lấy điểm M nằm ngoài đường thẳng d sao cho MJ vuông góc với d tại J. Đường thẳng qua I vuông góc với MK cắt MJ tại N. Khẳng định nào sau đây đúng?
IN là đường cao của ∆MIK;
KN là đường cao của ∆MIK;
Lời giải
Hướng dẫn giải:
Đáp án đúng là: D
Ta có: MJ ⊥ IK tại J nên MJ là đường cao của ∆MIK.
Mà N nằm trên đường thẳng qua I và vuông góc với MK nên IN ⟘ MK.
Do đó IN là đường cao của ΔMIK.
Xét ∆MIK có hai đường cao IN và MJ cắt nhau tại N nên N là trực tâm của ΔMIK.
Do đó KN là đường cao của ∆MIK.
Vậy cả A, B, C đều là khẳng định đúng. Vậy ta chọn phương án D.