Câu hỏi:
22 lượt xemLời giải
Hướng dẫn giải:
+ Với x < 1 thì f(x) = 3 luôn liên tục trên (– ∞; 1).
+ Với 1 < x < 2 thì f(x) = ax + b luôn liên tục trên (1; 2).
+ Với x > 2 thì f(x) = 5 luôn liên tục trên (2; +∞).
Do đó, ta cần xét tính liên tục của hàm số f(x) tại x = 1 và x = 2.
Ta có: ; ; f(1) = 3;
; ;f(2) = 5.
Để hàm số f(x) liên tục trên ℝ thì hàm số f(x) phải liên tục tại x = 1 và x = 2, tức là
Vậy a = 2, b = 1 thì hàm số f(x) liên tục trên ℝ.
Câu 1:
Tự luận
Cho hàm số g(x) liên tục trên ℝ trừ điểm x = 0. Xét tính liên tục của hàm số tại x = 1.
6 tháng trước
31 lượt xem
Câu 3:
Câu 4:
Tự luận
Xét tính liên tục của các hàm số sau trên tập xác định của chúng:
a)
b)
6 tháng trước
23 lượt xem