Câu hỏi:

44 lượt xem
Tự luận

Cho hình vuông H1 có cạnh bằng a. Chia mỗi cạnh của hình vuông này thành bốn phần bằng nhau và nối các điểm chia một cách thích hợp để có hình vuông H2. Lặp lại cách làm như trên với hình vuông H2 để được hình vuông H3. Tiếp tục quá trình trên ta nhận được dãy hình vuông H1, H2, H3, ..., Hn, ... Gọi sn là diện tích của hình vuông Hn.

Cho hình vuông H1 có cạnh bằng a. Chia mỗi cạnh của hình vuông này thành bốn phần bằng nhau

a) Tính sn.

b) Tính tổng T = s1 + s2 + ... + sn + ...

Xem đáp án

Lời giải

Hướng dẫn giải:

​a) Áp dụng định lí Pythagore, ta có cạnh của hình vuông H2 là

a2=a42+3a42=a58.

Khi đó diện tích của hình vuông H2 là s2=a582=58a2 .

Mà diện tích của hình vuông H1 là s1 = a2.

Do đó, s2=58a2=58s1 .

Lí luận tương tự, ta có s3=58s2,....,sn=58sn1=58n1a2 .

b) Ta có T = s1 + s2 + ... + sn + ... =a21+58+582+...+58n1+... .

Vì 1,58,582,...,58n1,... là cấp số nhân lùi vô hạn với u1 = 1 và công bội q = 58 nên

1+58+582+...+58n1+...=1158=83.

Vậy T=8a23 .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 24: