Câu hỏi:

66 lượt xem
Tự luận

Cho tam giác ABC có A^ = 120°. Tia phân giác của góc A cắt cạnh BC tại D. Đường thẳng qua D song song với AB cắt cạnh AC tại E. Chứng minh rằng tam giác ADE đều.

Xem đáp án

Lời giải

Hướng dẫn giải:

GT

ABC, A^=120°

AD là tia phân giác góc A

DE // AB

KL

ADE đều.

Chứng minh (Hình vẽ dưới đây)

Giải Toán 7 Bài 7 (Cánh diều): Tam giác cân (ảnh 1) 

Vì AD là tia phân giác góc A (giả thiết)

Nên BAD^=CAD^=12BAC^ (tính chất tia phân giác của một góc)

Mà BAC^=120° nên BAD^=CAD^=12BAC^=12.120°=60° 

Lại có DE // AB (giả thiết) nên ADE^=BAD^=60° (hai góc so le trong)

Do đó tam giác ADE có DAE^=ADE^=60° 

Suy ra tam giác ADE là tam giác cân có một góc bằng 60°.

Suy ra tam giác ADE là tam giác đều.

Vậy tam giác ADE là tam giác đều.

CÂU HỎI HOT CÙNG CHỦ ĐỀ