Câu hỏi:
22 lượt xemTrong Hình 76, cho biết các tam giác ABD và BCE là các tam giác đều và A, B, C thẳng hàng
Lời giải
Hướng dẫn giải:
GT |
ABD đều, BCE đều A, B, C thẳng hàng |
KL |
a) AD // BE và BD // CE; b) c) AE = CD. |
Chứng minh (Hình 76):
a) Vì tam giác ABD đều (giả thiết)
Nên AB = BD = AD và
Tam giác BCE đều (giả thiết)
Nên BC = CE = BE và
Vì mà hai góc này ở vị trí đồng vị
Nên AD // BE (dấu hiệu nhận biết hai đường thẳng song song)
Vì mà hai góc này ở vị trí đồng vị
Nên BD // CE (dấu hiệu nhận biết hai đường thẳng song song)
Vậy AD // BE và BD // CE.
b) Vì và là hai góc kề bù nên (tính chất hai góc kề bù)
Suy ra
Tương tự ta cũng có (tính chất hai góc kề bù)
Nên
Vậy
c) Xét tam giác ABE và tam giác DBC có:
AB = DB (chứng minh trên)
(chứng minh trên)
BE = BC (chứng minh trên)
Do đó ABE = DBC (c.g.c)
Suy ra AE = CD (hai cạnh tương ứng)
Vậy AE = CD.
Trong Hình 68, hai cạnh AB và AC của tam giác ABC có bằng nhau hay không?