Câu hỏi:

30 lượt xem
Tự luận

Cho tam giác ABC thoả mãn B^=C^. Kẻ AH vuông góc với BC, H thuộc BC (Hình 74).

a) Hai tam giác BAH và CAH có bằng nhau hay không? Vì sao?

b) Hai cạnh AB và AC có bằng nhau hay không? Vì sao?

Xem đáp án

Lời giải

Hướng dẫn giải:

a) Vì AH  BC (H  BC) nên AHB^=AHC^=90°

Do đó tam giác ABH vuông tại H, tam giác ACH vuông tại H

Xét tam giác ABH vuông tại H có: BAH^+B^=90° (trong tam giác vuông, hai góc nhọn phụ nhau)

Tam giác ACH vuông tại H có: CAH^+C^=90° (trong tam giác vuông, hai góc nhọn phụ nhau)

Mà B^=C^ (giả thiết)

Do đó BAH^=CAH^

Xét tam giác ABH (vuông tại H) và tam giác ACH (vuông tại H) có:

AH là cạnh chung

BAH^=CAH^

Do đó ABH = ACH (cạnh góc vuông – góc nhọn kề)

Vậy ABH = DACH.

b) Vì ABH = ACH (chứng minh câu a)

Suy ra AB = AC (hai cạnh tương ứng)

Vậy AB = AC.

CÂU HỎI HOT CÙNG CHỦ ĐỀ