Câu hỏi:

203 lượt xem

Cho tam giác MNP cân tại P. Hai đường trung tuyến MH và NK cắt nhau tại G. Kéo dài PG cắt MN tại I. Gọi E, F lần lượt là trung điểm của GP và GM. Trong các khẳng định sau có bao nhiêu khẳng định đúng?

(I) Các đường thẳng PF, GK, ME đồng quy;

(II) DPIN = DPIM;

(III) G là trọng tâm tam giác MNP;

0;
1;
2;
3.

Xem đáp án

Lời giải

Hướng dẫn giải:

Đáp án đúng là: D

Xét DMNP có hai đường trung tuyến MH và NK cắt nhau tại G nên G là trọng tâm tam giác MNP. Do đó khẳng định (III) là đúng.

G là trọng tâm tam giác MNP nên PI là đường trung tuyến của tam giác.

Suy ra I là trung điểm của MN hay MI = NI.

Xét DPIN và DPIM có

NI = MI (chứng minh trên),

PI là cạnh chung,

PN = PM (do DMNP cân tại P)

Do đó DPIN = DPIM (c.c.c) nên khẳng định (II) là đúng.

Xét DPGM có PF, GK, ME là các đường trung tuyến của tam giác nên ba đường này đồng quy tại một điểm. Do đó khẳng định (I) là đúng.

Vậy cả 3 khẳng định đều đúng, ta chọn phương án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ