Câu hỏi:

73 lượt xem

Một phép thử nghiệm có nn kết quả và tất cả các kết quả đều có khả năng như nhau. Khi đó xác suất xảy ra của mỗi kết quả đều bằng:

nn;
1n\frac{1}{n};
12n\frac{1}{{2n}};
1n+1\frac{1}{{n + 1}}.

Xem đáp án

Lời giải

Hướng dẫn giải:

Đáp án đúng là: B

Khi tất cả các kết quả của một trò chơi hay phép thử nghiệm ngẫu nhiên đều có khả năng xảy ra bằng nhau thì xác suất xảy ra của mỗi kết quả đều là \[\frac{1}{n}\], trong đó n là số các kết quả.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 14:
Tự luận

Cho hai đa thức: M(x)=2x43x3x+7x35x+1M\left( x \right) = 2{x^4} - 3{x^3} - x + 7{x^3} - 5x + 1;

                         N(x)= 2x3+x2+3x4+5x2x46+xN\left( x \right) =  - 2{x^3} + {x^2} + 3{x^4} + 5x - 2{x^4} - 6 + x.

a) Thu gọn và sắp xếp các đa thức trên theo lũy thừa giảm dần của biến.

b) Xác định bậc và hệ số cao nhất của hai đa thức N(x)N\left( x \right).

c) Tính 8M(1)+N(1)8M\left( 1 \right) + N\left( { - 1} \right).

d) Tìm đa thức Q(x)Q\left( x \right) sao cho Q(x)=M(x)+N(x)Q\left( x \right) = M\left( x \right) + N\left( x \right).

Tìm xx để Q(x)=(3x1)(x3+x2)+x2+4Q\left( x \right) = \left( {3x - 1} \right)\left( {{x^3} + {x^2}} \right) + {x^2} + 4.


1 năm trước 112 lượt xem