Câu hỏi:

62 lượt xem
Tự luận

Từ vị trí A ở phía trên một tòa nhà có chiều cao AD = 68 m, bác Duy nhìn thấy vị trí C cao nhất của một tháp truyền hình, góc tạo bởi tia AC và tia AH theo phương nằm ngang là CAH^=43°. Bác Duy cũng nhìn thấy chân tháp tại vị trí B mà góc tạo bởi tia AB và tia AH là BAH^=28°, điểm H thuộc đoạn thẳng BC (Hình 27). Tính khoảng cách BD từ chân tháp đến chân tòa nhà và chiều cao BC của tháp truyền hình (làm tròn kết quả đến hàng phần mười của mét).

Bài 8 trang 87 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Xem đáp án

Lời giải

Hướng dẫn giải:

Vì AH ⊥ BC và BD ⊥ BC nên AH // BD. Do đó ABD^=BAH^=28° (so le trong).

Khoảng cách BD từ chân tháp đến chân tòa nhà là:

BD = AD.cotABD^ = 68.cot28o  127,9 (m).

Do tứ giác ADBH có ADB^=AHB^=DBH^=90° nên ADBH là hình chữ nhật.

Suy ra AH = DB ≈ 127, 9 (m) và HB = AD = 68 (m).

Do ∆AHC vuông tại H, ta có CH = AH.tanCAH^  127,9.tan43o  119,3 (m).

Chiều cao BC của tháp truyền hình là:

BC = BH + HC ≈ 68 + 119,3 = 187,3 (m).

Vậy khoảng cách BD từ chân tháp đến chân tòa nhà khoảng 127,9 mét và chiều cao BC của tháp truyền hình khoảng 187,3 mét.

CÂU HỎI HOT CÙNG CHỦ ĐỀ