Câu hỏi:
35 lượt xemCho hàm số f(x) = x3 + ax2 + 3x + 1 (a ℝ là tham số). Tìm a để f'(x) > 0 với mọi x ℝ.
Lời giải
Hướng dẫn giải:
Có f'(x) = (x3 + ax2 + 3x + 1)' = 3x2 + 2ax + 3.
Để f'(x) > 0 với mọi x ℝ thì 3x2 + 2ax + 3 > 0 với mọi x ℝ, điều này xảy ra khi và chỉ khi ' = a2 – 9 < 0 −3 < a < 3.
Vậy −3 < a < 3 là giá trị cần tìm.
Cho f(x) = cos2. Đạo hàm f'(0) bằng
A. 1.
B. −1.
C. 2cos.
D. -2cos.
Cho hàm số với g(0) = 3, g'(0) = −8. Đạo hàm f'(0) bằng
A. 10.
B. −8.
C. −5.
D. 5.
Cho f(x) = xsinx và g(x) = . Giá trị là
A. −1.
B. sin1 + cos1.
C. 1.
D. −sin1 − cos1.
Cho f(x) = (x2 – x)e−x. Giá trị f'(0) là
A. 4.
B. −4.
C. 0.
D. −1.
Tính đạo hàm các hàm số sau:
a)
b) y = 2x + log3(1 – 2x);
c) ;
d) y = sin2x + cos23x.
Cho hàm số f(x) = với m là tham số. Tìm m để hàm số có đạo hàm tại mọi x ℝ.