Câu hỏi:
97 lượt xemCho hàm số f(x) = x + .
a) Tìm tập xác định của hàm số đã cho.
b) Tính đạo hàm f'(x) và tìm tập xác định của f'(x).
c) Tìm x sao cho f'(x) = 0.
Lời giải
Hướng dẫn giải:
a) Điều kiện 4 – x2 0 −2 ≤ x ≤ 2.
Vậy tập xác định của hàm số là [−2; 2].
b) Có f'(x) = (x+)' = 1 +
.
Điều kiện để f'(x) xác định là 4 – x2 > 0 −2 < x < 2.
Vậy tập xác định của f'(x) là (−2; 2).
c) Có f'(x) = 0 thì
.
Kết hợp với điều kiện ở câu b, ta có là giá trị cần tìm.
Cho f(x) = cos2. Đạo hàm f'(0) bằng
A. 1.
B. −1.
C. 2cos.
D. -2cos.
Cho hàm số với g(0) = 3, g'(0) = −8. Đạo hàm f'(0) bằng
A. 10.
B. −8.
C. −5.
D. 5.
Cho f(x) = xsinx và g(x) = . Giá trị là
A. −1.
B. sin1 + cos1.
C. 1.
D. −sin1 − cos1.
Cho f(x) = (x2 – x)e−x. Giá trị f'(0) là
A. 4.
B. −4.
C. 0.
D. −1.
Tính đạo hàm các hàm số sau:
a)
b) y = 2x + log3(1 – 2x);
c) ;
d) y = sin2x + cos23x.
Cho hàm số f(x) = với m là tham số. Tìm m để hàm số có đạo hàm tại mọi x ℝ.
Cho hàm số f(x) = x3 + ax2 + 3x + 1 (a ℝ là tham số). Tìm a để f'(x) > 0 với mọi x ℝ.