Câu hỏi:
1572 lượt xemCho tam giác có . Tia đi qua điểm của Kẻ và vuông góc với .
a) Chứng minh . Từ đó so sánh và ; và .
b) Giả sử . Chứng minh .
c) Tìm điều kiện về tam giác để có .
Lời giải
Hướng dẫn giải:
Suy ra \(BE\parallel CF\).
• Xét \(\Delta MBE\) và \(\Delta MCF\) có:
\({\widehat B_1} = {\widehat C_2}\) (hai góc so le trong);
\(BM = CM\) (vì \(M\) là trung điểm của \(BC\));
\({\widehat M_1} = {\widehat M_3}\) (hai góc đối đỉnh).
Do đó \(\Delta MBE = \Delta MCF\) (g.c.g)
Suy ra \(BE = CF\) (hai cạnh tương ứng).
• Xét \(\Delta MBF\) và \(\Delta MCE\) có:
\({\widehat B_2} = {\widehat C_1}\) (hai góc so le trong);
\(BM = CM\) (vì \(M\) là trung điểm của \(BC\));
\({\widehat M_2} = {\widehat M_4}\) (hai góc đối đỉnh).
Do đó \(\Delta MBF = \Delta MCE\) (g.c.g)
Suy ra \(BF = CE\) (hai cạnh tương ứng).
Vậy \(BE = CF\); \(BF = CE\).
b) Xét \(\Delta BEM\) và \(\Delta CEM\) có:
\(BE = CE\) (giả thiết);
\(BM = CM\) (vì \(M\) là trung điểm của \(BC\));
\(EM\) là cạnh chung
Do đó \(\Delta BEM = \Delta CEM\) (c.c.c).
c) Từ câu b: \(\Delta BEM = \Delta CEM\)
Suy ra \(\widehat {BME} = \widehat {CME}\) (hai góc tương ứng).
Mặt khác, \(\widehat {BME} + \widehat {CME} = 180^\circ \) (hai góc kề bù) nên \(\widehat {BME} = \widehat {CME} = 90^\circ \).
Suy ra \(EM \bot BC\) hay \(AM \bot BC\).
Xét \(\Delta BAM\) và \(\Delta CAM\) có:
\(BM = CM\) (vì \(M\) là trung điểm của \(BC\));
\(\widehat {BAM} = \widehat {CAM} = 90^\circ \);
\(AM\) là cạnh chung
Do đó \(\Delta BAM = \Delta CAM\) (c.g.c).
Suy ra \(AB = AC\) (hai cạnh tương ứng).
Vậy tam giác \(ABC\) có \(AB = AC\) thì \(BE = CE\).
Cho hai tam giác và có ; ; . Trong khẳng định sau, khẳng định nào là sai?