Câu hỏi:

21 lượt xem
Tự luận

Cho tam giác đều ABC có trọng tâm là G. Chứng minh G cũng là trực tâm của tam giác ABC

Xem đáp án

Lời giải

Hướng dẫn giải:

GT

ABC đều,

G là trọng tâm của ABC

KL

G là trực tâm của ABC

Chứng minh (Hình vẽ dưới đây):

Giải Toán 7 Bài 13 (Cánh diều): Tính chất ba đường cao của tam giác (ảnh 1) 

Gọi M, N theo thứ tự là trung điểm của AB và AC.

Vì tam giác ABC đều (giả thiết) nên AB = BC = CA.

Mà M là trung điểm của AB nên AM = BM.

Xét AMC và BMC có:

AC = BC (chứng minh trên),

MC là cạnh chung,

AM = BM (chứng minh trên).

Do đó AMC = BMC  (c.c.c).

Suy ra AMC^=BMC^ (hai góc tương ứng).

Mà AMC^+BMC^=180° nên AMC^=BMC^=180°2=90°.

Do đó CM  AB tại M.

Do đó CM là đường cao kẻ từ đỉnh C của tam giác ABC.

Chứng minh tương tự ta cũng có BN là đường cao kẻ từ đỉnh B của tam giác ABC.

Tam giác ABC có hai đường cao BN và CM cắt nhau tại G nên G là trực tâm của tam giác ABC.

Vậy G là trực tâm của tam giác ABC.

CÂU HỎI HOT CÙNG CHỦ ĐỀ