Câu hỏi:
51 lượt xemLời giải
Hướng dẫn giải:
Vì đồ thị Hình 2.41 là liên thông và các đỉnh đều có bậc chẵn (ở đây đều là bậc 4) nên đồ thị có chu trình Euler.
Một chu trình Euler xuất phát từ đỉnh A là ABCDABDCA và tổng độ dài của nó là
7 + 6 + 8 + 5 + 7 + 2 + 3 + 8 + 4 + 1 = 51.
Vậy một chu trình cần tìm là ABCDABDCA và có độ dài là 51.
Chứng minh rằng không có đơn đồ thị với 12 đỉnh và 28 cạnh mà các đỉnh đều có bậc 3 hoặc 6.
Tìm số đỉnh nhỏ nhất cần thiết để có thể xây dựng một đồ thị đầy đủ với ít nhất 1 000 cạnh.
Hãy chỉ ra ít nhất 5 đường đi từ S đến Y trong đồ thị trên Hình 2.38.
Kiểm tra xem các điều kiện của định lí Ore có thỏa mãn với các đồ thị trên Hình 2.39 không.
Giải bài toán người đưa thư với đồ thị có trọng số trên Hình 2.42.