Câu hỏi:
67 lượt xemLời giải
Hướng dẫn giải:
Đồ thị Hình 2.42 chỉ có hai đỉnh bậc lẻ là D và E nên ta có thể tìm được một đường đi Euler từ D đến E (đường đi này đi qua mỗi cạnh đúng một lần).
Một đường đi Euler từ D đến E là DBACDEBCE và tổng độ dài của nó là
2 + 4 + 4 + 2 + 6 + 3 + 5 + 1 = 27.
Để quay trở lại điểm xuất phát và có đường đi ngắn nhất, ta cần tìm một đường đi ngắn nhất từ E đến D theo thuật toán gắn nhãn vĩnh viễn.
Đường đi ngắn nhất từ E đến D là ECD và có độ dài là 1 + 2 = 3.
Vậy một chu trình cần tìm là DBACDEBCECD và có độ dài là 27 + 3 = 30.
Chứng minh rằng không có đơn đồ thị với 12 đỉnh và 28 cạnh mà các đỉnh đều có bậc 3 hoặc 6.
Tìm số đỉnh nhỏ nhất cần thiết để có thể xây dựng một đồ thị đầy đủ với ít nhất 1 000 cạnh.
Hãy chỉ ra ít nhất 5 đường đi từ S đến Y trong đồ thị trên Hình 2.38.
Kiểm tra xem các điều kiện của định lí Ore có thỏa mãn với các đồ thị trên Hình 2.39 không.
Giải bài toán người đưa thư với đồ thị có trọng số trên Hình 2.41.