Câu hỏi:

46 lượt xem
Tự luận

Xét hàm số y=f(x)=x32x2+1 trên đoạn [1;2], với đồ thị như Hình 1.16.

Tài liệu VietJack

a) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn [1;2].

b) Tính đạo hàm f’(x) và tìm các điểm x(1;2) mà f(x)=0.

c) Tính giá trị của hàm số tại hai đầu mút của đoạn [1;2] và tại các điểm x đã tìm ở câu b. So sánh số nhỏ nhất trong các giá trị này với min[1;2]f(x), số lớn nhất trong các giá trị này với max[1;2]f(x).

Xem đáp án

Lời giải

Hướng dẫn giải:

a) Nhìn vào đồ thị ta thấy, trên đoạn [1;2] ta có:

+ Giá trị lớn nhất của hàm số là max[1;2]f(x)=f(0)=f(2)=1.

+ Giá trị nhỏ nhất của hàm số là min[1;2]f(x)=f(1)=2.

b) f(x)=3x24x,f(x)=03x24x=0[x=0x=43

Vậy x=0,x=43 thì f(x)=0.

c) Ta có:f(0)=1;f(43)=(43)32.(43)2+1=527;f(1)=(1)32.(1)2+1=2;

f(2)=232.22+1=1

Do đó, số nhỏ nhất trong các giá trị này là 2, số lớn nhất trong các giá trị này là 1.

Ta thấy: max[1;2]f(x)=1min[1;2]f(x)=2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ