Câu hỏi:
74 lượt xem3. Tổng n số hạng đầu của một cấp số nhân
HĐ3 trang 54 Toán 11 Tập 1: Cho cấp số nhân (un) với số hạng đầu u1 = a và công bội q ≠ 1.
Để tính tổng của n số hạng đầu
Sn = u1 + u2 + ... + un – 1 + un,
thực hiện lần lượt các yêu cầu sau:
a) Biểu diễn mỗi số hạng trong tổng trên theo u1 và q để được biểu thức tính tổng Sn chỉ chứa u1 và q.
b) Từ kết quả phần a, nhân cả hai vế với q để được biểu thức tính tích q . Sn chỉ chứa u1 và q.
c) Trừ từng vế hai đẳng thức nhận được ở a và b và giản ước các số hạng đồng dạng để tính (1 – q)Sn theo u1 và q. Từ đó suy ra công thức tính Sn.
Lời giải
Hướng dẫn giải:
a) Ta có: u2 = u1 . q; ...; un – 1 = u1 . q(n – 1) – 1 = u1 . qn – 2; un = u1 . qn – 1.
Do đó, Sn = u1 + u2 + ... + un – 1 + un = u1 + u1 . q + ... + u1 . qn – 2 + u1 . qn – 1 (1).
b) Ta có: q . Sn = q . (u1 + u1 . q + ... + u1 . qn – 2 + u1 . qn – 1)
⇔ q . Sn = u1 . q + u1 . q2 + ... + u1 . qn – 1 + u1 . qn (2).
c) Lấy (1) trừ vế theo vế cho (2) ta được:
Sn – q . Sn = (u1 + u1 . q + ... + u1 . qn – 2 + u1 . qn – 1) – (u1 . q + u1 . q2 + ... + u1 . qn – 1 + u1 . qn)
⇔ (1 – q)Sn = u1 – u1 . qn
⇔ (1 – q)Sn = u1(1 – qn)
⇒ Sn = (với q ≠ 1).